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1 IMPLEMENTATION

1.1 Data Formatting and Dataset
We employ the approach suggested in [Holden et al. 2016] to repre-
sent poses with respect to the character’s forward-facing direction.
Specifically, the joint representation includes the position 𝑝 ∈ R3,
velocity 𝑣 ∈ R3, and rotation 𝑟 ∈ R6 for each frame. The joint
rotation 𝑟 is represented by the 2-axis matrix as proposed in [Zhang
et al. 2018]. Consequently, a single frame in the CVAE has 12 × 𝐽 di-
mensions, where 𝐽 represents the number of joints. The hip ℎ ∈ R3
contains the translational velocities in the XZ plane and a root
angular velocity around the Y axis.
All evaluations are based on human animations represented by

joint rotations, rather than network output. Human animation re-
construction can be divided into three categories based on the output
data used: rotation-based, position-based, and velocity-based, which
primarily use rotations, positions, and velocities.
The rotation-based method solely uses rotation to recover the

global position and rotation of joints via Forward Kinematics. The
position-based method integrates both position and rotation data.
We first recursively adjust the positions from the root to the end
joints to ensure that bone lengths remain unaltered as follows:

𝑝𝑖 ← 𝑏𝑖
𝑝𝑖 − 𝑝 𝑗
| |𝑝𝑖 − 𝑝 𝑗 | |2

+ 𝑝 𝑗 , (1)

where 𝑏𝑖 is the length of the 𝑖-th bone, and 𝑝 𝑗 represents the parent
of 𝑝𝑖 . Once the joints’ positions are updated, we calculate the joints’
rotation from the updated positions and leverage Forward Kine-
matics to attain the final animation similar to the rotation-based
method. The velocity-based method firstly recovers the joints’ posi-
tion using the joints’ velocity and the position at the initial frame,
then processes similarly to the position-based method.
We utilize the CMU dataset and STYLE100 [Mason et al. 2022]

for our experiments. STYLE100 is a labeled dataset suitable for
evaluating the Fréchet Motion Distance (FMD) [Tang et al. 2023; Yin
et al. 2023]. For all datasets, we divide the training set and testing
set in a 9 : 1 ratio.
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1.2 Training Details
1.2.1 𝑓𝛿 (·). The 𝑓𝛿 (·) function takes the hip h ∈ R𝑇×3 as input and
then generates contact states for two legs (𝑐𝑡 ∈ R𝑇×2) for 𝑇 frames.
We acquire the ground-truth contact states using the following
equation:

| |𝑝𝑖+1𝑗 − 𝑝
𝑖
𝑗 | |

2
2 < 𝜖𝑣 and ℎ𝑒 𝑗 < 𝜖𝐻 , (2)

where 𝑝𝑖
𝑗
is the position of foot joint 𝑗 at frame 𝑖 , ℎ𝑒 𝑗 is the joint

height, 𝜖𝑣 = 0.02 and 𝜖𝐻 = 10 cm are thresholds.
We learned two 𝑓𝛿 (·) on the CMU dataset and STYLE100 Dataset

[Mason et al. 2022], respectively, using residual convolution net-
works. Each network comprises five convolution layers with 32 hid-
den units each. The first and the last layer are common layers while
the three middle layers are residual layers. The temporal kernel sizes
for these layers are 11, 5, 5, 5 and 1, respectively. ReLU serves as the
activation function in the hidden layers, while the HardSigmoid
function is employed in the output layer. We employ AdamW as our
optimizer, setting the learning rate to 1e-4 and employing a weight
decay of 1e-2.

1.2.2 Style transfer architecture. We utilized similar structures as
defined in [Jang et al. 2022] to configure our style GCNs, contact
GCNs, and AdaIN modules. Besides, we exclude the hip from𝑀𝑠 and
𝑀𝑐 by setting the corresponding dimension to zero when input to
the style GCNs and contact GCNs. The trajectory CNN is a residual
convolution network comprising three convolution blocks, each
followed by a pooling layer. Each convolution block includes a
linear layer and three additional residual convolution layers with
kernel sizes of 3, with hidden units set to 16, 32, and 32, respectively.
Rather than considering all joints, the trajectory CNN only considers
hip velocity as input.

The transformer module of the generator first leverages a linear
layer to transform the output of the AdaINs into a 256-dimensional
variable, which is then embedded with position encoding, and fed
into three transformer layers. Following that, it is fed into a linear
layer to produce the hip velocity and latent variable 𝑧. We employ
the AdamW optimizer and set both the learning rate and weight
decay to 1e-4.
We use the encoder of Transformer-based Variational AutoEn-

coder (VAE) from [Chen et al. 2023] as our CVAE encoder. We begin
by embedding the sequence with global position tokens. Subse-
quently, the embedded sequence is fed into multiple transformer
layers, producing Gaussian distribution parameters 𝜇 and Σ. Finally,
we sample the latent variable z using the reparameterization trick
in [Kingma and Welling 2013].

The CVAE decoder employs a transformer for the decoding pro-
cess, in which the attention blocks use the hip as the query vector
and derive the key and value from the latent variable 𝑧. Before feed-
ing the hip into the transformer, we perform a linear transformation
on it to ensure that its dimension corresponds to that of 𝑧 and then
apply the global positional embedding. To generate the final motion,
the transformer’s output is fed into a linear layer.
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The CVAE architecture consists of 9 transformer layers for both
the encoder and decoder, with each layer having hidden units set
to a size of 256. We use the GELU activation function, and the
dimension of the latent variable 𝑧 is set to 8 × 256, consistent with
the configuration reported in [Chen et al. 2023]. We utilize the
AdamW optimizer with a learning rate of 1e-4 and a weight decay
of 1e-2.

2 MANIFOLD VARIANT

2.1 Frame-Level Methods
We present a variant of our method that encodes frame-level ran-
domness rather than sequence-level randomness. Specifically, we
model z as a vector of temporal latent variables: z = 𝑧1∼𝑇 . Each
𝑧𝑖 ∈ R8 is represented by eight coefficients that blend different
phases, inspired by phase-based synthesis methods [Holden et al.
2017; Starke et al. 2022]. Our experiments demonstrate that this
representation is sufficient for reconstruction, as shown in Tab. 3,
where the reconstruction metric measures the L2 global position
distance between the reconstructed motion and the ground truth.
We apply a similar architecture to the frame-level method as in
our manifold method, with some modifications. During encoding,
we include a temporal dimension in the output. During decoding,
we create the query vector q1∼𝑇 by concatenating the latent z1∼𝑇
and hip h1∼𝑇 sequences. The key k ∈ R𝑘×𝑑 and value v ∈ R𝑘×𝑑 of
the attention layer are learned parameters that model the motion
phases in the latent space, where 𝑘 = 8 denotes the number of
motion phases and 𝑑 is the phase dimensions.

3 EXPERIMENTS
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Fig. 1. The diagram illustrates the contact patterns of some short clips from
the STYLE100 Dataset. Each row shows 6 contact timing patterns of 6 short
clips with similar normalized hip velocities, with the top rectangle of each
pattern representing the left foot and the bottom rectangle representing the
right. The clips in different rows have different normalized hip velocities.

3.1 Hip velocity-contact timing relationship
To demonstrate that hip velocity patterns and contact timing are
related, we conduct an experiment. First, we divide a walking se-
quence into multiple 20-frame short clips. We then apply min-max
normalization to the hip velocities of each clip to exclude the influ-
ence of the speed magnitude since contact timing is more closely
associated with the speed change than the absolute magnitude.
Following that, we cluster these normalized clips based on their nor-
malized hip velocities’ L2 distance using the K-means method into 6
clusters. During the clustering process, similar contact patterns are
assembled into the same cluster, demonstrating that one can deduce

a sequence’s contact timing pattern from its hip velocity change
without knowing the hip’s average speed magnitude.

3.2 Performance of the learned 𝑓𝛿 (·)
We evaluate the performance of the learned 𝑓𝛿 (·) by examining pre-
cision and recall rate, which we refer to as Contact Precision-Recall.
We first identify the frames in which any foot touches the ground
and the frames in which it lifts off as state change frames. Precision
is the percentage of the intersection of predicted and ground-truth
state change frames in the predicted step change frames. The re-
call rate is the percentage of the intersection in ground-truth state
change frames. Two state change frames in the intersection have
a temporal difference of less than 2 frames (30 fps). It is notewor-
thy that the contact precision-recall is stringent since the 2 frames
difference is short. Results are displayed in Tab. 1.
To examine whether the learned pattern is irrelevant to the ab-

solute magnitude of the hip velocity, we use a factor in the range
[0.5, 1.5] to randomly scale the magnitude before feeding the hip
velocity into the model. The experiment’s results are presented in
Tab. 1, which indicates that the absolute magnitude does not affect
the contact timing significantly.
The metrics derived from evaluating the STYLE100 are higher

than those obtained from the CMU. This differencemay be due to the
higher complexity of the motions in the CMU dataset. Specifically,
the characters in the CMU dataset occasionally stand on stairs of
different heights or swing from a trapeze, making it challenging
to extract contact accurately or difficult for the model to learn the
relationship.

In conclusion, our results reveal the presence of the relationship
in both datasets. Notably, we do not focus on developing a supe-
rior architecture to enhance the precision further since the learned
𝑓𝛿 (·) function performs sufficiently well for purposes of decoupling
contact.

Table 1. The precision and recall rate of the learned 𝑓𝛿 ( ·) on STYLE100
dataset and CMU dataset.

Precision Recall Scale Precision Scale Recall
STYLE100 0.8229 0.8754 0.7676 0.8455

CMU 0.7182 0.7083 0.6188 0.7005

3.3 Ablation study
3.3.1 Constraining foot velocity for controlling the contact. Our
method is the first to constrain contact timing by constraining
hip velocity. Constraining foot velocity is a possible alternative.
However, foot velocity is relevant to both style and leg movements,
thus constraining velocity causes loss conflict and undermines the
quality and style effects. To validate this, we experimented to mea-
sure the performance of the method that constrains foot velocity.
Because the pretrained manifold is designed to relate the hip to the
contact timing, it is unnecessary when constraining foot velocity
directly. Therefore, we remove it and directly output the motion
by the transformer. Additionally, we replace 𝑓𝛿 (H) in Eq. 3 with
a function that extracts the contact states based on foot velocity.
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After training, the resulting character exhibited jitter around the
contact frame, indicating unnaturalness. The quantitative results, as
shown in Tab. 2, validate that constraining foot velocity significantly
hindered the style.

𝐿ctt = | |𝑓𝛿 (H𝑠𝑐𝑐 ) − 𝑓𝛿 (h𝑐 ) | |22 + ||𝑓𝛿 (H𝑠𝑠𝑐 ) − 𝑓𝛿 (h𝑠 ) | |22, (3)
where 𝑓𝛿 (·) is the learned function that captures the relationship
between the hip velocity and the contact timing.

Table 2. Comparisons between our method with the method constraining
velocity.

Methods (FMD ↓ SA ↑)
Constrain velocity 1222 0.185
Ours 72 0.943

Table 3. Comparisons between our manifold with three previous manifolds
and a variation of our manifold. The abbreviation "Rec" represents the
reconstruction metric.

Methods Ct P. Ct R. FMDvel Fv Rec.
CMU
MLD (pos) 0.4232* 0.5717* 0.0572 0.50 0.88
MLD (vel) 0.4321* 0.6893* 0.0596 0.29 1.03
MVAE (vel) 0.6355 0.5464 0.0189 0.35 0.68
Frame-level (pos) 0.2740 0.7410 0.0175 0.80 0.50
Frame-level (vel) 0.3948 0.7138 0.0182 0.53 0.67
VQVAE (pos) 0.4989 0.7335 0.0106 0.45 1.69
VQVAE (vel) 0.7319 0.7678 0.0120 0.23 1.80
Ours (pos) 0.5981 0.7787 0.0160 0.33 0.64
Ours (vel) 0.7403 0.7930 0.0171 0.17 0.83
100STYLE
MLD (rot) 0.3899* 0.4760* 0.0269 1.47 0.39
MLD (pos) 0.3889* 0.4757* 0.0261 1.42 0.38
MLD (vel) 0.4618* 0.4311* 0.0265 0.92 0.36
MVAE (rot) 0.6145 0.5221 0.9100 1.13 0.26
MVAE (vel) 0.6129 0.4843 0.0265 0.84 0.49
Frame-level (rot) 0.4985 0.6953 0.0191 1.42 0.62
Frame-level (pos) 0.4999 0.6953 0.0190 1.26 0.61
Frame-level (vel) 0.5613 0.6480 0.0190 0.95 0.79
VQVAE (rot) 0.8269 0.8579 0.0447 0.76 1.44
VQVAE (pos) 0.8162 0.8688 0.0440 0.79 1.45
VQVAE (vel) 0.8633 0.8554 0.0475 0.67 1.53
Ours (rot) 0.8117 0.8917 0.0157 0.99 0.76
Ours (pos) 0.8156 0.8875 0.0156 0.93 0.76
Ours (vel) 0.8782 0.8712 0.0157 0.79 0.91

3.3.2 Data representations. Table 3 presents the metrics of differ-
ent manifolds. The comparison is conducted using position-based,
velocity-based, and rotation-based representations. Our results demon-
strate that the velocity-based representation exhibits fewer foot skat-
ing artifacts, and higher contact precision compared to the other
two representations.

3.3.3 Style Loss. If the latent variable 𝑧 fails to capture the style
variation correctly, adding style loss can considerably impair per-
formance in the style transfer task. This is demonstrated in Table 4,
which shows that including style loss during training results in
worse FMD and SA metrics for the MLD model.

Table 4. Comparisons between different manifolds for our framework.

Methods (XZ ↓ Angle ↓) (FMD ↓ SA ↑) (Ct. P ↑ Ct. R ↑) Fv ↓
- Style loss
MotionPuzzle 5.5 0.046 87 0.920 0.467 0.476 1.68
MLD 3.3 0.027 135 0.751 0.862 0.872 0.60
Frame-Level 2.5 0.027 194 0.571 0.919 0.926 0.61
Ours 2.4 0.013 85 0.879 0.849 0.849 0.61
+ Style loss
MLD 3.2 0.029 282 0.574 0.804 0.813 0.83
Frame-Level 2.9 0.036 134 0.729 0.798 0.841 0.61
Ours 2.7 0.023 69 0.931 0.785 0.802 0.60

3.4 Comparisons
The complete quantitative results of the comparison are shown in
Tab. 5. The data in brackets represents the performance of previ-
ous methods that use Ik-based post-processing. Due to the lack of
ground-truth contact timing in the interpolation with a factor of
0.5, we estimate the contact timing using the learned function 𝑓𝛿 (·),
with the input as the predicted hip velocity. This metric is used to
assist in measuring the motion quality.

Notably, although Motion Puzzle’s interpolation with a factor of
1.0 achieves superior contact precision-recall as this configuration
is equivalent to reproducing the style sequence, it presents poor
results on contact precision-recall for factor 0.5, evidencing its poor
performance in interpolation.
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Table 5. Comparisons between our method with previous motion style transfer methods. (XZ, Angle) are trajectory metrics, (FMD, SA) are style metrics and
(Ct P., Ct R.) are contact timing metrics. Fv represents the foot skating metric. Fv of the dataset is 0.64.

Methods (XZ ↓ Angle ↓) (FMD ↓ SA ↑) (Ct P. ↑ Ct R. ↑) Fv ↓
Style interpolation
Aberman et al. (0.5) N/A N/A N/A N/A 0.862 0.864 0.72
Motion Puzzle (0.5) 5.6 0.049 N/A N/A 0.558 0.655 1.24
Motion Puzzle (+ decouple, 0.5) 1.1 0.007 N/A N/A 0.433 0.472 1.46
Ours (0.5) 2.2 0.017 N/A N/A 0.889 0.889 0.53
Aberman et al. (1.0) N/A N/A 191 (247) 0.732 (0.574) 0.791 (0.839) 0.773 (0.798) 0.83 (0.67)
Motion Puzzle (1.0) 5.5 0.046 87 (167) 0.920 (0.760) 0.467 (0.800) 0.476 (0.866) 1.68 (0.78)
Motion Puzzle (+ decouple, 1.0) 1.7 0.010 69 (145) 0.940 (0.812) 0.363 (0.733) 0.294 (0.867) 1.91 (0.87)
Ours (1.0) 1.6 0.014 72 0.943 0.782 0.799 0.63
Contact interpolation
Aberman et al. (0.5) N/A N/A 180 0.769 0.341* 0.371* 1.60
Motion Puzzle (0.5) 45 0.465 53 0.979 0.343* 0.493* 1.39
Motion Puzzle (+ decouple, 0.5) 5.7 0.050 61 0.955 0.274* 0.262* 2.08
Ours (0.5) 6.4 0.034 65 0.948 0.677* 0.660* 0.60
Aberman et al. (1.0) N/A N/A 180 0.773 0.232 0.498 2.05
Motion Puzzle (1.0) 79 0.862 40 0.990 0.874 0.919 0.72
Motion Puzzle (+ decouple, 1.0) 3.6 0.020 52 0.968 0.458 0.270 1.91
Ours (1.0) 2.9 0.031 70 0.931 0.741 0.784 0.58
Trajectory interpolation
Motion Puzzle (+ decouple, 0.5) N/A N/A 52 0.964 0.397 0.440 1.48
Ours (0.5) N/A N/A 55 0.963 0.682 0.702 0.46
Motion Puzzle (+ decouple, 1.0) 2.7 0.015 48 0.970 0.400 0.510 1.46
Ours (1.0) 8.9 0.031 65 0.943 0.642 0.678 0.60
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