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(a) SDFDDGI full result (b) SDFDDGI illumination

(c) Ray Tracing GI (d) RTXGI (e) SSGI (f) VXGI

Figure 1: The figure above provides an example of our SDFDDGI on the upper row (a)(b) as well as a comparison to other real-time GI
methods in the row below. Our approach achieved less than 5 ms per frame on GTX 970M hardware with the lowest acceptable quality, while
on RTX 2080Ti even achieved a performance within 1 ms per frame. Besides, it solves other method’s deficiencies such as real-time Ray
Tracing’s extra noise and lack of multi-bounce lighting (a), light leaking issues on the dynamic yellow sphere on RTXGI (b), mere use of
screen space information in Screen Space GI (c), and rougher detailing on Voxel-Based GI (d).

Abstract
Global Illumination (GI) is of utmost importance in the field of photo-realistic rendering. However, its computation has always
been very complex, especially diffuse GI. State of the art real-time GI methods have limitations of different nature, such as
light leaking, performance issues, special hardware requirements, noise corruption, bounce number limitations, among others.
To overcome these limitations, we propose a novel approach of computing dynamic diffuse GI with a signed distance fields
approximation of the scene and discretizing the space domain of the irradiance function. With this approach, we are able to
estimate real-time diffuse GI for dynamic lighting and geometry, without any precomputations and supporting multi-bounce GI,
providing good quality lighting and high performance at the same time. Our algorithm is also able to achieve better scalability,
and manage both large open scenes and indoor high-detailed scenes without being corrupted by noise.

CCS Concepts
• Computing methodologies → Real-Time Rendering; Global Illumination; Signed Distance Fields;

1. Introduction

Global illumination allows us to improve strikingly the realism of
a virtual scene. However, its real-time computational cost is far too
expensive for most applications, such as in the video game industry.

To solve this problem, many approaches have been proposed. For
example, baked Light Maps [McT04] allow us to compute global
illumination for static lights and scenes by baking the lighting of
the scene. Precomputed Radiance Transfer [SKS02] solved their
limitations for dynamic light sources. [SSS∗20] proposed an ex-

tension for the baking system of Light Maps that supports dynamic
changes. However, all these approaches pose limitations on the dy-
namic changes, thus affecting the artistic design of the scenes. Be-
sides, precomputations add an extra production cost.

Of course, there also exist some methods that can manage com-
pletely dynamic GI, for example: Voxel-Based GI [CNS∗11], Ray
Tracing GI [OS19], Screen Space GI [RGS09] [ST15] [SKS11],
RTXGI [MGNM19] and so on. These techniques fill the gap left by
the area of real-time global illumination, making it possible to use
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GI for real-time applications, like in the video game industry. How-
ever, these methods have limitations of different nature, such as
light leaking, performance issues, special hardware requirements,
noise corruption, bounce number limitations and lack of scene in-
formation, among others.

Inspired by RTXGI [MGNM19], we propose SDFDDGI
(Signed-Distance-Field Dynamic Diffuse Global Illumination).
Compared to RTXGI, our approach doesnâĂŹt need the use of
specific hardware, made improvements in its performance and re-
sult, increased dynamic response speed and completely solved light
leaking problems.

This method uses Signed Distance Fields (SDF) [Har96] to make
a slim representation of the scene. We sample the irradiance func-
tion of the space domain and interpolate these samples to estimate
its global illumination. To improve the resemblance of the original
irradiance function and its discrete form, we employ SDF to lead
the distribution of sampling points. Then, when interpolating sam-
ples, we use SDF for the visibility tests to prevent the ocurrence of
light leaking artifacts. We also use Contact GI to enhance details
on SDFDDGI.

Our paper makes the following contributions:

• We use SDF primitives and clusters to compress the information
in the scene, reduce data size, increase memory use and speed up
computations.
• SDF allows us to query very fast the nearest distance and spatial

gradient to optimize the position of discretized sampling points
in order to better suit the spatial distribution of the irradiance
function.
• SDF is able to compute soft shadows efficiently [Aal18], op-

timize the interpolation strategy of the discretized points, and
completely avoid light leaking artifacts, as well as provide soft
indirect shadowing effects.

2. Related work

Since the appearance of the rendering equation [Kaj86], global illu-
mination has historically shaped the whole development of graph-
ics theory.

Lo(P,Do) = Le(P,Do)+
∫

Ω

fr(P,Di,Do)Li(P,Di)(n ·Di)dDi. (1)

In the field of real-time photorealistic rendering, the speed and
quality of the computation of global illumination has all along
been a hot topic of research. In this section, we present a general
overview of some of the most concerning GI techniques and re-
search.

Virtual Point Lights (VPL) [LSK∗07] is one of the earliest real-
time GI technique. Its main contribution is the substitution of GI
computations by adding virtual point light sources at the areas illu-
minated by direct lighting. This approach has many limitations but
its result is satisfactory for local indirect illumination of spotlight
light sources or other narrow-ranged ones.

Reflective Shadow Maps (RSM) [DS05] is also an early method
for real-time global illumination. It is based on the same idea as

shadow maps, not only store depth information but also store light
sources direction and radiant flux as well and use this reflective
shadow map as global illumination. However, it does not take into
account indirect occlusion, thus producing severe indirect illumi-
nation misestimations in some scenes. It also only provides one-
bounce GI and is not able to manage area lights and skylight.

RSM and VPL ultimately evolved into Light Propagation Vol-
umes (LPV) [KD10]. LPV introduced the concept of volume in
VPL and transfers illumination data across space. This method
solved many of the problems of VPL and RSM, but light leaking
remained a serious concern as well as some accuracy issues.

Apart from this, there are voxelization approaches [CNS∗11],
which first voxelize the scene into a sparse voxel tree and then in-
ject lighting data. This allows us to estimate global illumination at
real-time frame rates but it also produces light leaking. Besides, in
scenes with highly varying dynamic geometry, the computational
cost of voxelization is too high.

High-end global illumination approaches like Ray Tracing GI
[OS19] reconstruct world coordinates and normals out of G-
buffers, then sample the hemisphere to compute global illumina-
tion. The number of computations of this kind of approaches is
very large, so it is only viable for a small amount of samples and
high-end hardware, thus needing a final denoising stage [SKW∗17]
[KIM∗19] for an acceptable result. The main disadvantage of this
method is its performance, being almost impossible to calculate
multi-bounce illumination, apart from the cost of additional denois-
ing.

At the moment of writing this, performance-wise the best choice
is Screen Space GI, like screen space diffuse GI [RGS09] [ST15],
as well as screen space specular reflections (SSR) [SKS11]. Com-
paritively speaking, necessary information for specular reflections
normally resides inside screen space, while diffuse GI often lacks
most needed lighting information, thus not being able to provide an
optimal result.

Last year, NVIDIA proposed a new approach RTXGI
[MGNM19] using its ray tracing accelerated hardware, by means
of discretizing the spatial distribution of the irradiance function.
Compared to common probe-based GI [McA15], its main contri-
bution is the use of depth information and Variance Shadow Maps
(VSM) [DL06] as well, in order to prevent light leaking artifacts
that arise from the discretization of irradiance. However, its effect
on GI of details at real-time frame rates is not optimal. Besides,
light leaking artifacts can also appear with very thin objects and it
depends severely on RTX-accelerated hardware, which affects its
use extent.

On that basis, we realised that SDF [Har96] can be used to sim-
plify the scene representation for low-frequency global illumina-
tion like diffuse GI. SDF is a scalar field in the space domain, which
represents the distance from a point in space to the nearest surface
in the scene. A positive value is assigned if the point is in the outer
region of the nearest surface and negative if it is inside, thus pro-
ducing a compact representation of the geometry information of a
scene.

Inspired by RTXGI, we proposed a novel approach SDFDDGI,
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which overcomes aforementioned limitations and has the following
advantages:

• It does not need any precomputations.
• It can manage both dynamic geometry and dynamic lighting, as

well as animations and skylight.
• It provides interframe stability and low delay response for dy-

namic changes.
• It completely eradicates light leaking problems.
• Our technique is not limited to specific hardware, it can also be

used in lower-end hardware.

3. Approach

SDFDDGI has mainly 4 stages:

1. SDF Cluster: generate the scene’s SDF representation and its
clustering acceleration structure.

2. Probe choosing: choose suitable sampling points in space.
3. Probe update: update the irradiance on a sphere of directions

around the sampling points.
4. Per pixel GI shading: interpolate different probes to calculate

global illumination for all pixels in the screen.

3.1. SDF Cluster

SDF is usually stored in volume textures. However, with this ap-
proach we need to make a trade-off between the resolution and
detail of the scene and the data size. Therefore, we describe our
scene with a distance field composed of different SDF primitives,
then parse the global SDF value in space instead of performing the
voxelization of the scene. For example, we only need 4 KB to store
an SDF representation of the Sponza Palace scene.

Our scene objects are represented by a series of basic SDF prim-
itives. Each SDF primitive includes a primitive type and its re-
spective transform. Example primitive types are rectangular blocks,
planes, cylinders, or any other whose analytical form is simple
enough to easily compute its SDF value. In every frame, we use
CPU to perform culling on SDF primitives on the surroundings of
the camera and perform Level Of Detail (LOD) for further away
primitives, i.e. use less primitives to express a larger rougher shape.
Afterwards, we generate a cluster structure to speed up the SDF
query.

We use a clustering approach to pack near SDF primitives into
a cluster, as shown is Figure 2. When performing a query, SDF
primitives in a cluster will first be treated as one and be jointly
rejected or not, what refrains us from querying every single SDF
primitive, thus accelerating the process by 20% to 100% depend-
ing on the scene. This has proven to have a better performance than
BVH [WBS07] for smaller scale data. Since the number of primi-
tives is not much, we use the CPU to better distribute the strain of
the GPU. Besides its time expenditure is negligible in comparison
to the other stages.

In todayâĂŹs hardware, memory access cost is far greater than
the cost of computations. Unordered access of memory, which is
characteristic of diffuse GI, has an even more negative impact on
performance on cache. In ray tracing algorithms we often need to

Figure 2: For the computation of the diffuse global illumination, the
scene is represented as a set of different SDF primitives, marked as
green lines in the example picture. Then, near SDF primitives are
packed into a cluster, marked as white lines above, to accelerate the
query of the scene SDF value at one point.

use Ray Binning [Ben19] and other techniques to improve cache
hit ratio. However, in our case the primitives are relatively small,
so much as to being able to put everything inside the L1 cache,
making SDF query even more advantageous than reading volume
textures. Moreover, this implies that we can easily support dynamic
scenes, not like voxelization approaches that

At the same time, since the data we need is mainly on the L1
cache, global memory is available for use for other parts that have
lower requirements on memory access. In this manner, processes
that have high requirements on memory but are computationally
inexpensive, like G-Buffer or Shadow Map generation, can run on
the GPU, thus increasing GPU general utilization rate, which is an
important factor on the general frame renderization time.

3.2. Probe choosing

Since Irradiance is a R5 function, we split its domain in two parts:
the space coordinates R3 and the direction R2 as Equation 2.

P =

x
y
z

 ,D =

[
ω

θ

]
,

Irradiance = E(P,D).

(2)

Our method discretizes the spatial domain of the irradiance func-
tion E into many sampling points P. Every sampling point is re-
ferred to as probe. Every probe stores the irradiance on a sphere
of directions around its position. We create a spatially arranged
probe volume around the camera and use these probes to interpolate
global illumination.

Irradiance is not a continuous function in its spatial domain. For
example, in walls or at occluded points there are evident disconti-
nuities, which are the main cause of light leaking in most real-time
global illumination algorithms. If we want an appropriate represen-
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tation of the irradiance distribution in space, we need to carefully
place the probes.

Because of this reason, we first calculate the SDF value at
probeâĂŹs location. If it is smaller than a threshold value, this
means it is too near to other objects or even inside one, what would
negatively impact the quality of the sampling. Then, we query the
gradient of SDF and use gradient descent method to obtain an ac-
ceptable sampling point near the original position. If the displace-
ment between the position of last and current frame surpasses a
threshold, the irradiance at last frame will need to be rejected, so
we allocate more rays to this probe to ensure a more stable result.
In order to decrease the number of probe updates, in each frame we

1: procedure UPDATEPROBEPOS

2: lastPos← position of probe in last frame
3: pos← position of probe in the uniform grid
4: if querySdf(pos)< threshold1 then
5: pos← gradientDescent(SDF, pos)
6: if distance(pos, lastPos)> threshold2 then
7: markRejectHistory(probe)
8: return pos

Figure 3: Pseudocode for the algorithm to find a suitable position
for a probe. We move our probe from the grid if it is too near or
inside objects and we check if the displacement of the probe from
last frame’s position is too large to consider GI information of last
frame.

first choose which probes need to be updated and divide the probe
updates between different frames so as to increase performance.

Different weights are assigned to the probes according to their
distance to the camera and direction to the camera in order to decide
which probes should be updated.

Due to the probe updates, this method may cause jitter between
frames. Nevertheless, this phenomenon is not as evident as in the
original RTXGI since the performance of our approach allows us to
perform a more extensive sampling, what partly mitigates the effect
of jittering.

In contrast to RTXGI, our method does not need human interven-
tion in order to have a better probe distribution and it can rapidly
and accurately respond to scene changes. This also reduces the
leaking caused by dynamic objects.

3.3. Probe update

To obtain the irradiance function E, radiance L needs to be com-
puted first. We use compute shaders to sample the radiance over a
sphere of directions at each probe:

E(P,D) =
∫

4π

max(0,cos(D,D′)) ·L(P,D′)dD′. (3)

In this phase, we use a 8x8 thread block to update each chosen
probe. Before sampling, all threads in a block need to cooperate to

move all or part of the SDF primitives into the L1 cache, since they
will be queried frequently.

In order to speed up the tracing process, we employ clusters to
perform culling on SDF primitives. Taking point A in Figure 4 as
the starting point of tracing (a), the algorithm to query SDF can be
described as follows:

1. Compute the smallest distance d1 to the bounding box of the
first cluster C1.

2. Since d1 is smaller than initial distance D (initialized here as
infinity), traverse all primitives in cluster C1, find the nearest
distance d2 to them and update distance D=min(D, d2).

3. Calculate the smallest distance d3 to cluster C2.
4. Since d3 is smaller than D, traverse all primitives inside cluster

C2, find the nearest distance d4 to them and update distance
D=min(D, d4).

5. Since the distance to the bounding box of cluster C3 is larger
than D, we skip this cluster, so SDF query result is D=d4.

This algorithm targets a single SDF query but it can be employed
together for a series of queries in a ray for further taking advantage
of this culling process. Take point B as example (b), we can ini-
tialize our minimum distance D to twice the previous SDF value
D=2lastSDF, since the SDF value of point B needs to be smaller
than twice the previous SDF. So the process of querying the SDF
at point B can be described as follows:

1. Get the smallest distance d1 to cluster C1, and since it is greater
than D=2ÂůlastSDF, skip it.

2. Compute the smallest distance d2 to the bounding box of cluster
C2.

3. Since distance d2 is smaller than 0, get the smallest distance d3
to the primitives inside the cluster and update distance D, as it
is smaller.

4. Then, since distance d4 to cluster C3 is greater than D, we also
skip this cluster, so SDF query result is D=d3.

As aforementioned, many clusters can be rejected using twice
the previous SDF query result as initial distance, especially when
SDF value is smaller. This works notably good for sphere tracing,
where query density is very high near object boundaries, i.e. where
SDF value is small. Thus, algorithm on Figure 4 is able to greatly
boost the performance of SDF sphere tracing, especially for com-
plex scenes. Besides, this algorithm is stack free and GPU-friendly.

We sample the irradiances at random low-discrepancy [Kel13]
directions and store them in the shared memory. To calculate the
intersections with the scene, we perform an accelerated version of
sphere tracing [KS14] [BV18] for our circumstances.

After intersection point is calculated, Reflective Shadow Map
(RSM) is used to obtain its flux. Additionally, the emission value
stored inside the primitive is used in order to support area lights and
self emission.

By reusing probe’s GI data of last frame, we can achieve multi-
bounce global illumination. Since multi-bounce diffuse GI is gen-
erally lower frequency than first bounce diffuse GI, we limit its
sample number to a lower level in order to decrease computational
cost. Apart from this, we can speed up GI response by multiply-
ing multi-bounce GI by a coefficient between 0 and 1 and, thus,
decrease loop gain effects.
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(a) SDF query at point A
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(b) SDF query at point B

Figure 4: This figure provides a 2D example of SDF querying for
two consecutive points A and B for a scene with three clusters C1,
C2 and C3 with their respective SDF primitives inside. The blue
lines represent the smaller distance to the bounding box of each
cluster while the red lines represent the smaller distance to each
cluster’s SDF primitive. The numbers enumerate each of the steps
of the algorithm.

After synchronizing all threads in a block, each thread calculates
the irradiance in their own direction D using Equation 3, and use
octahedral mapping [CDE∗14] to write irradiance data into a probe
atlas texture. We keep a balance between the sample amount and
the degree of temporal mixing. If there are too few samples, we
apply a stronger temporal mixing in order to prevent jitter. By stor-
ing the radiance samples to the group shared memory, we can reuse
them across threads to compute the irradiance, thus stabilizing the
result.

3.4. Per pixel GI shading

Probe Visibility tests take an important role to prevent light leaking
triggered by the discretization of irradiance in spatial domain.

RTXGI used probe depth buffers and VSM [DL06] to perform
these tests, which is limited to the resolution of the depth buffer,
thus unable to completely remove the light leaking effect, espe-
cially the leaking caused by thin objects. Inspired by the easy gen-
eration of soft shadows using SDF [Aal18], we use the SDF shadow
trace to make visibility test, which is able to naturally produce soft
indirect shadows and transitions.

Each pixel needs to interpolate 8 probes, what implies to carry
sphere tracing 8 times, making it unacceptable as it is too expensive
to compute. Fortunately, we only need to perform probe visibility
test instead of sampling radiance using sphere trace. For this reason,
we can do an extensive down sampling at this stage.

First we down sample the screen depth buffer according to a
min/max checkerboard [Bau19] to obtain a half resolution buffer.
For checkerboard black pixels, we obtain the maximum value in
an area of 4 pixels in the full resolution depth buffer, otherwise for
white pixels we take the minimum. This is made to assure we will
have valid samples that can cover the whole depth range. This algo-
rithm was proposed in 2019 by the Red Dead Redemption team and

it has proven to be very effective for downsampling in the domain
of low frequency rendering.

After that, in the min/max checkerboard down sampled depth
buffer, out of every 2x2 pixel block we choose one to perform probe
visibility test. This choosing process follows the next principles:

• For different frames, choose a different pixel.
• Assure as much as possible that we cover the whole depth extent.

Before performing visibility test on the chosen pixel, we first
perform a duplicate removal on each 2x2 block unit. It is obvi-
ous that close starting points have the same visibility test result for
a specific probe. Therefore, in every 2x2 block it is necessary to
assure that the rest of the probes are not repeated or the distance
between starting points is not too large for the visibility test. We
use shared memory for the pixels to exchange information, then af-
ter performing duplicate removal 4 threads are assigned on average
to each pixel inside the block, making every threadâĂŹs visibility
task diminish from 8 to 4 on average. In our experiments, we use
a 4x4 size block to obtain an optimal accelerated result, because
an oversized block can decrease the merging of visibility test tasks,
thus decreasing the effectiveness of the weighting algorithm.

After completing the visibility test tasks, we write the result back
into shared memory and distribute it to every corresponding pixel
in order to employ this for probe interpolation. Since our approach
is able to accurately obtain the visibility of the probe, we do not
need to perform an extra cosine weighting or any other additional
weighting terms like RTXGI to further avoid leaking artifacts.

Figure 5: Dark room without light leaking even with thin walls.
Our approach is independent of voxel resolution, so objects of any
thickness are not able to produce light leaking.

In the upsampling stage, if a pixel does not have a valid re-
sult, we assign it a value according to surrounding pixels and last
frameâĂŹs reprojection result using motion vector. What affects
more in the whole process to the final quality of the result is find-
ing representative pixels in the second phase, but we can reuse past
results and Neighbourhood Clipping [Kar14] to reduce its influence
until it is negligible.

This method greatly compensates the overwhelming strain pro-
duced by the per pixel visibility tests. This technique reduces 8 tests
per pixel to 0.25 tests per pixel or lower, greatly increasing perfor-
mance and almost without a negative impact on the end result.
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Âů

(a) SDFDDGI

(b) RTXGI

(c) Ray Tracing GI (d) VXGI

Figure 6: Our approach (a) is able to retain the reflections on the pillar, like for RTXGI (b) and VXGI (d). Ray Tracing GI (c), however, lacks
multi-bounce reflections and needs extra denoising, which may blur details.
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RTXGI uses a low resolution depth buffer to perform these vis-
ibility tests, whereas we employ a per pixel probe visibility test to
completely eradicate light leaking as Figure 5 shows and optimiz-
ing the process with an effective down sampling to extra reduce the
computational cost.

3.5. Contact GI

We can greatly diminish the computational cost of GI by discretiz-
ing the irradiance on the space domain. However, this leads to loss
of detail. We created a new technique called Contact GI based on
Ground Truth Ambient Occlusion (GTAO) [JWPJ16] to enhance
the details of diffuse GI.

Ambient occlusion represents how much ambient lighting re-
ceives an object surface according to the occlusion received by sur-
rounding objects. In the per pixel GI shading stage, the position
of probes and that of the actual pixel is not the same triggers the
loss of global illumination detail. By adding AO to the GI shad-
ing result we can to some extent enhance its details. However, this
practice does not take into account the effect of multi-bounce indi-
rect illumination among other additional problems. For example, in
directly lighted regions the effect of diffuse GI over AO should be
greater, but in RTXGI this wrongly weakens the indirect illumina-
tion. By using contact GI we corrected this problem.

At the same time of computing ambient occlusion, we sample
the lighting at occluded points and merge it with the probe GI so
that we can take into account the effect of multi-bounce lighting,
therefore vastly improving the level of detail of GI.

3.6. Cascade volume

By employing a varying-density probe volume, we provide a strat-
ified Cascade Probe Volume, that is, assign a sparsely populated
probe volume for further away regions from the camera, making the
algorithm feasible for a greater extension of the scene, even more
than 1 km away. This way this method can not only be applied for
small indoor scenes, but for mid-ranged building scenes and large
open worlds as well. Besides, this process of reduction of more dis-
tant probes can be adapted to the actual cost of global illumination
in order to further extend the effect of global illumination in the
scene. We employ Mean Value Coordinates [FKR05] instead of tri-
linear interpolation for the interpolation between different density
volumes so that we can have a softer transition.

For the furthest strata of the probe volume we do not perform any
visibility test since at this scale it seemed unnecessary for global
illumination.

4. Results

We tested the performance and the quality of GI of our algorithm
with different hardware and scenes. Most of the experiments were
performed in comparison to other state-of-the-art real-time global
illumination approaches.

(a) Contact GI on (b) Contact GI off

(c) Contact GI on

(d) Contact GI off

Figure 7: Some examples of the effect of Contact GI on a sim-
ple lighted room (a) (b) and the Sponza Palace (c) (d). Contact GI
greatly compensates the loss of detail produced by the discretiza-
tion of the irradiance by enhancing the realism of details.

4.1. Probe volume resolution

Since the position of the probes is assigned at runtime according
to SDF gradient descent, this method does not need any previous
human intervention for an ideal distribution of the probes. We first
observed the effect of the resolution of the probe volume on the
result GI and then we compare it to an offline path tracer as Ground
Truth.

In Figure 9 we can observe that if probe volume resolution is
very low it will not produce light leaking problems, although the
result GI will, of course, not be very accurate.
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(a) SDFDDGI

(b) RTXGI

Figure 8: Comparison of light leaking artifacts on SDFDDGI and
RTXGI. Our method (a) is able to eradicate light leaking. However,
on thin objects such as the curtain on the Sponza scene RTXGI (b)
may face light leaking issues.

4.2. Effect of Contact GI

Contact GI is able to compensate the loss of detail of diffuse GI
produced by the sampling of the irradiance function. In Figure 7 we
can observe the difference of using Contact GI on a basic lighted
room and on the Sponza scene.

Contact GI brings about significant improvements to the effect of
minor traits of the scene to the diffuse global illumination. It solves
some of the loss of detail caused by the disparity of the position of
the probes and the real position taken into account for shading.

4.3. GI comparison to other methods

We compared our method with other real-time GI techniques us-
ing the Sponza scene. This scene has 5,000 triangles, 26 differ-
ent materials and 48 different resolution textures. We employed 43
SDF primitives for the dynamic representation of the structure of
the scene and fall it apart into 8 clusters. The probe volume of
SDFDDGI, as well as RTXGI, has a resolution of 22x14x32 probes.
VXGI voxel resolution is 64x64x64.

In Figure 6 we can see that with the same probe volume, our
approach fits better the subtleties of the scene. In comparison to
Ray Tracing GI, our method is able to support multiple bounce il-

lumination and at the same time it does not need a denoiser, which
could blur some details. VXGI with a higher resolution is not able
to achieve the same level of detail and, at the same time, it already
needs longer computation time.

As seen in Figure 8, for low resolution probe volume there is no
light leaking, which is still a problem for RTXGI for, for example,
thin objects as the curtains. Instead our method is able to correctly
manage the occlusion of curtains.

4.4. Performance

We tested the performance of the algorithm with Sponza as test
scene under the same configuration as in previous section, analyz-
ing the time consumed for every stage of the algorithm, also in
comparison to the other aforementioned methods.

Consumed time

Total Per stage

Probe Update: 0.70
SDFDDGI 1.67 Contact GI: 0.41

Shading: 0.56

Depth Mipmap: 0.06
SSGI (diffuse only) 1.17 HiZ trace: 0.69

Denoise: 0.42

RTXGI 3.98 Probe Update: 3.28
Shading: 0.70

Ray Tracing GI (diffuse only) 4.13 Trace ray: 2.23
Denoising: 1.90

VXGI (diffuse only) 5.24 Voxelize: 3.31
Cone trace: 1.93

Table 1: Stage by stage performance comparison of state of the art real-
time GI approaches with our method, all running on RTX 2080Ti and I7
9700k, with a render resolution of 1920x1080 on the Sponza scene.

As we see in Table 1, our method achieves the best performance
for the same or better quality. Time per frame is only shorter for
Screen Space GI, which makes a lot of quality compromises in or-
der to achieve this performance.

4.5. Conclusions

We have proposed a novel approach to calculate real-time global il-
lumination using SDF. Apart from saving all work flow for baking,
and supporting fully dynamic lighting and geometry for a scene,
it also provides better quality GI and has higher performance than
other similar approaches, thus having some potential applications.
However, our method still has room for improvement. For example,
according to the relative placement of the camera and the probes,
we could use importance sampling around this direction in order to
further stabilize global illumination because only the normal fac-
ing to camera can be seen by the camera. Our research interest also
focuses on dynamic GI, so for specular GI we still have to rely on
a mixed approach using other methods such as SSR or Ray Trac-
ing, but using SSR on top does not add any extra cost to achieve
diffuse-specular path. Last of all, our approach uses simplified SDF
primitives to represent the scene, until now we manually provide its
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(a) 2x1 (b) 2x2 (c) 6x6

(d) 4x4 (e) 6x6 (f) Ground Truth

Figure 9: SDFDDGI results with different probe volume resolutions. Path Tracing Ground Truth as reference. With too few probes, as we see
in the room with 2x1 probes (a), we are not able to produce satisfying global illumination but light leaking is still unpresent. Besides, with a
denser, but still relatively rough, probe volume grid (c), we can get similar global illumination as in a Path Tracing reference (f).

simplified SDF representation, what requires an enormous amount
of work for large and complex scenes. For the future, it would be
necessary to research on the automatization of this process.
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