L)

Check for

updates

RL-ACD: Reinforcement Learning-based Approximate Convex

Decomposition

YUZHE LUOQ, State Key Lab of CAD&CG, Zhejiang University, China and LIGHTSPEED, China

ZHERONG PAN, LIGHTSPEED, USA
KUI WU, LIGHTSPEED, USA
XINGYI DU, LIGHTSPEED, USA
YUN ZENG, LIGHTSPEED, USA

XIANGJUN TANG, State Key Lab of CAD&CG, Zhejiang University, China
YIQIAN WU, State Key Lab of CAD&CG, Zhejiang University, China
XIAOGANG JIN*, State Key Lab of CAD&CG, Zhejiang University, China

XIFENG GAO", LIGHTSPEED, USA

Fig. 1. In complex scenarios (10 dense meshes, 189k faces) (left), RL-ACD decomposes models via a lightweight neural policy, predicting near-optimal cutting
planes to generate 216 compact convex hulls (right) at 2.6s/model while preventing sub-optimal cuts from prior solutions.

Approximate Convex Decomposition (ACD) aims to approximate complex
3D shapes with convex components, which is widely applied to create com-
pact collision representations for real-time applications, including VR/AR,
interactive games, and robotic simulations. Efficiency and optimality are
critical for ACD algorithms in approximating large-scale, complex 3D shapes,
enabling high-quality decompositions with minimal components. Unfor-
tunately, existing methods either employ sub-optimal greedy strategies or

“Corresponding authors.

Authors’ Contact Information: Yuzhe Luo, yzluo@zju.edu.cn, State Key Lab of CAD&CG,
Zhejiang University, China and LIGHTSPEED, China; Zherong Pan, zherong.pan.usa@
gmail.com, LIGHTSPEED, USA; Kui Wu, walker.kui.wu@gmail.com, LIGHTSPEED,
USA; Xingyi Du, du.xingyi@wustl.edu, LIGHTSPEED, USA; Yun Zeng, iamzengxiang@
gmail.com, LIGHTSPEED, USA; Xiangjun Tang, Xiangjun.Tang@outlook.com, State
Key Lab of CAD&CG, Zhejiang University, China; Yigian Wu, onethousand1250@
gmail.com, State Key Lab of CAD&CG, Zhejiang University, China; Xiaogang Jin,
jin@cad.zju.edu.cn, State Key Lab of CAD&CG, Zhejiang University, China; Xifeng
Gao, gxf.xisha@gmail.com, LIGHTSPEED, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2025/12-ART271

https://doi.org/10.1145/3763270

rely on computationally intensive multi-step searches. In this work, we
propose RL-ACD, a data-driven, reinforcement learning-based approach for
efficient and near-optimal convex shape decomposition. We formulate ACD
as a Markov Decision Process (MDP), where cutting planes are iteratively
applied based on the current stage’s mesh fragments rather than the entire
fine-grained mesh, leading to a novel, efficient geometric encoding. To train
near-optimal policies for ACD, we propose a novel dual-state Bellman loss
and analyze its convergence using a Q-learning algorithm. Comprehensive
evaluations across diverse datasets validate the efficiency and accuracy of
RL-ACD for convex decomposition tasks. Our method outperforms the multi-
step tree search by 15X in terms of computational speed, while reducing the
number of resulting components by 16% compared to the current state-of-
the-art greedy algorithms, significantly narrowing the sub-optimality gap
and enhancing downstream task performance.

CCS Concepts: « Computing methodologies — Shape modeling.

Additional Key Words and Phrases: Mesh Decomposition, Reinforcement
Learning

ACM Reference Format:

Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang,
Yiqian Wu, Xiaogang Jin, and Xifeng Gao. 2025. RL-ACD: Reinforcement
Learning-based Approximate Convex Decomposition. ACM Trans. Graph.
44, 6, Article 271 (December 2025), 12 pages. https://doi.org/10.1145/3763270

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

https://orcid.org/0009-0008-5796-6144
https://orcid.org/0000-0001-9348-526X
https://orcid.org/0000-0003-3326-7943
https://orcid.org/0000-0001-6036-6782
https://orcid.org/0009-0004-6104-4434
https://orcid.org/0000-0001-7441-0086
https://orcid.org/0000-0002-2432-809X
https://orcid.org/0000-0001-7339-2920
https://orcid.org/0000-0003-0829-7075
https://orcid.org/0009-0008-5796-6144
https://orcid.org/0000-0001-9348-526X
https://orcid.org/0000-0003-3326-7943
https://orcid.org/0000-0001-6036-6782
https://orcid.org/0009-0004-6104-4434
https://orcid.org/0000-0001-7441-0086
https://orcid.org/0000-0002-2432-809X
https://orcid.org/0000-0001-7339-2920
https://orcid.org/0000-0003-0829-7075
https://orcid.org/0000-0003-0829-7075
https://doi.org/10.1145/3763270
https://doi.org/10.1145/3763270
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763270&domain=pdf&date_stamp=2025-12-04

271:2 «+ Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yigian Wu, Xiaogang Jin, and Xifeng Gao

Action
Decode

State
Embedding Embedding

Action
Decode

Fig. 2. The pipeline of RL-ACD: The input mesh m is processed iteratively, with each part m; embedded into a state vector s(m;) and evaluated by the agent
to determine the optimal cutting action. This process continues until all mesh components meet the predefined concavity threshold, indicating that the mesh

is fully decomposed into smaller convex components, forming D” with h being the number of decomposition steps.

1 Introduction

3D mesh-based geometric processing tasks like collision detec-
tion [Kockara et al. 2007] face rising complexity with mesh intri-
cacy. In real-time applications like video games and VR/AR en-
vironments, detailed meshes are often substituted with low-cost
representations to enable faster collision detection. Similarly, in
robotics research, policy learning demands vast datasets generated
by simulators, further emphasizing the need for efficient mesh sim-
plifications. Approximate Convex Decomposition (ACD) algorithms
are widely employed for these purposes, as they approximate de-
tailed meshes using limited convex components. However, achieving
both efficiency and near-optimality in ACD algorithms remains a
significant challenge. For time-critical applications, practitioners
seek near-optimal decompositions with the fewest possible compo-
nents. Moreover, these algorithms must efficiently process tens of
thousands of objects in large virtual environments, requiring rapid
computations.

Existing ACD algorithms typically follow a common recipe con-
sisting of two crucial components: 1) a concavity metric to measure
how closely the decomposed components match their convex hulls;
and 2) a decomposition strategy that recursively cuts the mesh
with planes to reduce the concavity metric while using a minimal
number of components. The choice of plane-selection strategy in
this process significantly affects the quality of the decomposition.
Unfortunately, most existing methods, such as V-HACD [Mamou
et al. 2016], Thul et al. [2018], and NavACD [Andrews 2024] rely
on sub-optimal greedy strategies, leading to shortsighted results
with considerable redundant convex components. CoACD [Wei et al.
2022] introduces the Monte Carlo Tree Search (MCTS) to determine
the cutting planes. Using a multistep search strategy, MCTS can
achieve better decomposition results with fewer convex compo-
nents. However, MCTS requires simulating plane cuts over multiple
steps using a trial-and-error approach, leading to significant com-
putational overhead.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

To achieve both accuracy and efficiency, we introduce Reinforce-
ment Learning-based ACD (RL-ACD). We train a lightweight neu-
ral policy network to predict the optimal cutting planes for mesh
components, achieving both low policy inference cost and nearly
optimal decomposition results. The primary challenge lies in the
vast state space arising from the intricate mesh geometry. Indeed,
identifying near-optimal cutting planes necessitates a policy atten-
tive to fine-grained mesh details, traditionally requiring a high-
resolution 3D state encoder. Training such detailed encoders can be
both computation- and data-intensive. To address this challenge, we
formulate the problem as a Markov Decision Process (MDP) with
a novel policy representation. Our policy proposes cutting planes
solely based on the mesh component being cut, rather than the
entire mesh to start with. We show that our partial observation can
be effectively encoded using standard point cloud features [Zhang
et al. 2023]. To train our neural policies effectively, we propose a
novel dual-state Bellman loss that approximates the value function
of a plane-cut using the value sum of two after-cut components. Our
analysis reveals that our modified Bellman loss leads to convergent
Reinforcement Learning (RL) algorithm and our evaluations high-
light that our decomposition policy exhibits superior performance
compared to state-of-the-art baselines, achieving fewer convex com-
ponents than NavACD [Andrews 2024] and CoACD [Wei et al. 2022],
as well as significantly lower inference cost than CoACD. In sum-
mary, our work makes the following major contributions:

o Novel formulation of ACD as MDP with partial observation.
o Dual-state Bellman loss for efficient ACD policy learning.

2 Related Work

We discuss the optimality and efficacy of prior works on exact and
approximate ACD, while also exploring related machine learning
algorithms that are related to ACD.

Exact Convex Decomposition. These algorithms aim to decom-
pose a 3D model into the fewest exact convex components, a task

proven to be NP-Hard [O’Rourke and Supowit 1983]. Heuristic tech-
niques [Bajaj and Dey 1992; Bajaj and Pascucci 1996; Hershberger
and Snoeyink 1998; Joe 1994] have been proposed to reduce com-
plexity, but even advanced solvers frequently produce too many
components, rendering them impractical for real-world applications.

Approximate Convex Decomposition. Pioneered by Lien and Am-
ato [2004], ACD permits partial concavities in decomposed results
to reduce component count. Subsequent ACD heuristics primarily
differ in concavity metrics and plane-selection strategies. Concavity
metrics measure decomposition quality by comparing a mesh com-
ponent with its convex hull. The algorithm terminates when the con-
cavity metric is lower than a predefined threshold. These metrics fall
into three categories: (a) Surface-based metrics calculate geometric
differences between the mesh surface and its convex hull [Lien and
Amato 2004, 2007; Mamou and Ghorbel 2009]. (b) Volume-based
metrics measure volume differences [Andrews 2024; Mamou et al.
2016; Thul et al. 2018; Wei et al. 2022]. CoACD [Wei et al. 2022] uses a
hybrid collision-aware metric, while NavACD [Andrews 2024] incor-
porates navigation space constraints. (c) Visibility-based metrics
utilize the ratio of mutually visible points within the shape [Ren et al.
2011]. The plane-selection strategy significantly impacts ACD effec-
tiveness. Most techniques employ a greedy strategy that iteratively
selects cutting planes to minimize concavity. CoOACD applies time-
consuming MCTS to approximate globally optimal plane search.
V-HACD [Mamou et al. 2016] and CoACD sample equidistant cut-
ting planes from each axis-aligned direction, while NavACD samples
from concave edges and uses three axis-aligned bisection planes.
However, these approaches may struggle with complex models due
to limited or shortsighted search spaces.

Learning-based ACD.. Methods like BSP-Net [Chen et al. 2020]
and CvxNet [Deng et al. 2020] rely on global feature encoding for
3D object representation using convex components. However, such
global encoding strategies fundamentally constrain their applica-
bility to industrial-scale complex models due to limited geometric
adaptivity. In contrast, our method formulates the problem as a
Markov Decision Process and trains a neural decomposition policy
to learn near-optimal cutting planes for complex shapes. As our
key innovation, our policy operates in a reduced observation space,
focusing solely on the mesh component being cut, instead of the
entire initial mesh. In this way, our policy can better attend to the
key feature of the mesh that affects the quality of the cutting plane.
Furthermore, we introduce a novel Bellman loss to facilitate policy
training using Q-learning [Sutton and Barto 2018].

Reinforcement Learning. RL aims at solving long-horizon decision-
making problems. The success of deep RL algorithms [Wang et al.
2022] has found abundant applications in computer graphics for
character animation [Peng et al. 2018], animation control [Ma et al.
2018], and object packing [Zhao et al. 2023], scene optimization [Sun
et al. 2024], to name just a few. The success of deep reinforcement
learning (RL) is largely based on the ability of deep neural networks
to represent optimal policies and value functions. However, RL has
seen limited application in geometry processing, with only a few
notable exceptions [Freymuth et al. 2023; Yang et al. 2023]. This is
primarily due to the ultra-high and variable-dimensional state spaces

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition « 271:3

inherent to geometric data, which often involve arbitrarily complex
shapes, posing significant challenges to the expressive capacity of
neural representations. In this work, we successfully adapt RL to
address the problem of convex decomposition, demonstrating its
potential in the geometric domain.

3 Methodology

This section details our approach, beginning with the problem for-
mulation and its subsequent MDP reformulation. We then introduce
our novel dual-state Bellman loss and the corresponding Q-learning
algorithm used for policy optimization.

As shown in Figure 2, the input of our ACD algorithm is a
solid mesh m, and the output is a set of mesh components M =
{m1, my, - - - } such that U,,c po¢ = m, and their corresponding con-
vex hull set D = {CH(m;), CH(m), - - - }, where CH(m;) denotes
the convex hull of m;. The ACD algorithm is equipped with a concav-
ity metric, denoted Concavity(m;), which measures the difference
between m; and CH(m;). The goals of ACD are two-fold: 1) mini-
mize the number of components | M|, to improve the computational
efficiency of downstream applications, and 2) ensure that 9 approx-
imates the original mesh m as tightly as possible by minimizing the
total concavity metric ¥, o« Concavity(m;).

3.1 MDP Reformulation of ACD

We observe that the typical process of ACD, as described in prior
works [Andrews 2024; Mamou et al. 2016; Wei et al. 2022], can be
naturally formulated as a MDP [Puterman 1990]. These methods
iteratively select a component m; € M and choose a cutting plane
p to divide m; into two sub-components, mé and m]. The selection
of the cutting plane p € R* depends on the current state of the
decomposition, i.e., M. Thus, we define our ACD-MDP as the tuple
(S, A,r,T,y), consisting of state space S, action space A, reward
function r, state transition function T, and discount factor y. Our
state space consists of the current partial decomposition. In other
words, any M is considered as a state so that M € S.

Our action space comprises two parts. First, we select a candidate
component m; € M for dissection and then choose a cutting plane
p. In other words, an action (i, p) € A is a tuple of the candidate
component index and the cutting plane. Our state transition function
employs a mesh Boolean operation to dissect m; into m! and m! and
update the state through the state transition function:

T(M, (i, p)) = M 2 MU {ml, m[} = {m;}. ()

Finally, we design our reward function, which is composed of two
terms. The first term r; measures the reduction ratio of the convex
hull volume between before and after the plane-cut compared to
the origin solid mesh:

[ICH(my)| — |CH(m})| - |CH(m])||

nM.(i.p)) = it ,

@

where |CH(e)| is the volume of a convex hull. The second term
avoids excessive cuts in parts with minimal gain. We assign a com-
pletion reward after the decomposition of M to encourage fewer
cuts:

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:4 « Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yigian Wu, Xiaogang Jin, and Xifeng Gao

. I[M’ is terminal]

ra(M, (i.p)) = T+log(IM[-1)’ ®)
where I[M’ is terminal] is an indicator function that equals one
and only if the partial decomposition state M’ meets the required
concavity threshold €, i.e., Concavity(m;) < € for each m; € M. If
M’ is the terminal state, r; encourages the policy to use fewer cuts
by being inversely proportional to |[M’| — 1, which is the number
of cuts to reach the state M’. Our ultimate reward is the sum of the
two terms above, i.e. r = A;r1 + Ayr2, with A4, A; being the weights to
be fine-tuned. The goal of our work is to solve the MDP over a finite
horizon of h steps, searching for a near-optimal policy 7 ((i, p) |IM)
that maximizes the cumulative reward.

3.2 Partially Observable Assumption

While deep neural policy learning techniques exhibit superior per-
formance in high-dimensional state and action spaces, applying
them to our ACD-MDP policy 7 ((i, p) M) presents two key chal-
lenges. First, the state space representing 3D mesh components has
a dynamic dimensionality stemming from the varying number of
mesh components during the decomposition process. Second, after
repeated plane cutting, the components m; can become very small,
making it difficult to recognize geometric structural features.

To address these challenges, we adopt two techniques that signif-
icantly reduce the amount of information a neural policy needs to
encode. First, inspired by empirical studies such as [Zhao et al. 2023],
we discretize the action space. This design choice significantly re-
duces policy complexity because the network only needs to evaluate
a finite set of actions (i, p) through a lightweight Q-function, rather
than modeling a continuous action distribution. With a discrete
action space, we can then represent the optimal policy using a state-
action value function Q((i, p), M), which estimates the expected
cumulative reward obtained by taking action (i, p) in state M under
our policy 7 ({i, p)|M). The optimal policy can be solved via:

(i p) argmax;y . a1 pep QU p), M),

where P represents a pre-computed set of candidate cutting planes.

Second, to more efficiently represent the detailed mesh features,
we adopt a novel observation space. Observation function is typi-
cally used by Partially Observable MDP (POMDP) [Kaelbling et al.
1998] to model the partial environmental information that an agent
perceives. Although our problem setting allows the entire state to
be observed, the complete state is challenging for a neural network
to digest. Therefore, we borrow ideas from POMDP and introduce
an index-dependent observation function O(M, i) that produces a
partial observation of the state M, under the assumption that we
already know we want to cut the component m;. In our problem,
we introduce a key assumption below:

To determine the optimal p for m; € M, the policy only
needs to observe the selected component m;, readily ignoring
other components M — {m;}.

Our assumption above is based on the observation that the reduc-
tion ratio of different convex hulls are used as reward signal r; and
are thus additive. We then define the observation as O(M, i) = m;

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

and simplify the neural policy to represent the reduced state-action
value function Q(p, m;), again under the assumption that we know
m; is to be cut, from which the optimal policy is solved via:

(i,p) = argmax;_; .. | s pep (m;) QP> mi), (4)

where P (m;) is a set of candidate cutting planes computed exclu-
sively for m;. This simplifying assumption effectively tackles the
challenges posed by dynamic state space dimensions and the de-
creasing component size as decomposition progresses recursively.
By parameterizing Q as a neural network, its input becomes a single
mesh component instead of the entire set M of a changing size, al-
lowing us to normalize m; for the 3D shape encoder, denoted as s(e).
For instance, using a 3D voxel-based encoder [Wu et al. 2016], we
can re-scale m; to occupy the entire voxel grid. Given such a policy,
our ACD procedure is summarized in Figure 2, where we iteratively
evaluate Equation 4 to choose the optimal candidate cutting plane
and perform the plane cutting until the concavity of all the mesh
components falls below a user-specified threshold e.

3.3 Policy Parameterization

For our problem, the key to designing an efficient neural policy lies
in the choice of an effective 3D shape encoder. We opt for point
cloud-based encoding due to its robustness to variations in topology
and geometric complexity. While point cloud sampling may result
in some loss of geometric information, our procedure mitigates this
issue by sampling and normalizing each partial mesh component
during the iterative cutting process. This normalization, coupled
with a powerful point cloud encoder, allows for effective feature
extraction from the normalized components.

Specifically, as shown in Figure 3, for the current mesh compo-
nent m; undergoing cutting, we uniformly sample a fixed number of
points on its normalized mesh surface. We then leverage pre-trained
12P-MAE [Zhang et al. 2023] point cloud encoder for feature extrac-
tion, denoted as F(m;). In addition to extracting features from the
mesh itself, we also compute the point cloud sampled features of
the mesh’s convex hull as part of the state, denoted as F(CH(m;)).
As a result, we can define our state encoder as:

s(m;) = (F(m;), F(CH(m))). ®)

Since for any m; we use the same number of candidate cutting
planes |P(m;)|, we can have the MLP output the state-action value
function of all the cutting planes in a single inference, denoted as:

Q(pj, mi) = MLP; o s(m;), (6)

where MLP; is the jth output of the MLP. This combined with
Equation 4 completes our parameterization of the policy.

3.4 Action Space Discretization

As previously discussed, the possible cutting planes for m; could be
any plane in space that intersects m;. However, training a decision
model by sampling from the entire continuous 3D plane space using
a Gaussian distribution has proven ineffective [Zhao et al. 2023].
Therefore, we choose to discretize the action space by extending the
previous methods’ search spaces [Andrews 2024; Thul et al. 2018;
Wei et al. 2022]. For each mesh component, as shown in Figure 4,
our discrete candidate planes consist of the following components:

Fig. 3. Mesh state embedding. The mesh part m; and its convex hull
CH(m;) form point cloud representations. The point clouds are normalized
and processed by [12P-MAE to yield state embeddings.

(a) equidistantly sampled cutting planes along the spatial X-, Y-,
and Z-directions; (b) equidistantly sampled cutting planes along the
primary axes computed via PCA of each mesh part; and (c) candi-
date planes sampled from the concave edges of the mesh. Notably,
during model training we exclusively employ strategies (a) and (b),
reserving strategy (c) for supplementary candidate planes during
algorithm deployment (see Section 4.2). We emphasize that all prior
methods such as [Andrews 2024; Wei et al. 2022] can be modified
to use our extended search space, with a much larger breadth of
search. However, these methods need to perform exact plane-cutting
for each candidate plane during runtime. Therefore, using our ex-
tended search space can significantly increase their computational
overhead. In contrast, our method only requires performing multi-
ple exact plane cuts during RL training. At runtime, we primarily
rely on lightweight network inference for each candidate plane,
supplemented by very limited cutting computations, leading to a
significant runtime cost saving.

g P a
A ped o pel P
\Y:'\’ / (c)
(b) e

Fig. 4. Our potential planes for an input mesh component m; include: (a)
spatial axis-align planes (red); (b) PCA axis-align planes (green); and (c)
planes sampled from concave edges (yellow). For each concave edge, three
cutting planes are sampled: one bisecting the dihedral angle and two aligned
with the edge’s adjacent faces, as referenced NavACD [Andrews 2024].

3.5 Q-Learning using Dual-state Bellman Loss

We train our policy using deep Q-learning [Mnih et al. 2015]. This
method is based on the Bellman loss that unrolls the Bellman opti-
mality condition over one decision step, which involves the state-
action values of a mesh component before and after plane-cutting.
Under our policy parameterization, however, the value after plane-
cutting involves two mesh components mf and m], whose values are
predicted separately via two Q-functions. We still need a method

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition « 271:5

to define the combined value function of {mf m; }. To this end, we
propose our second assumption:

The state value function is additively composable over mesh
components, i.e. V(M) = X,,.e 0 V(m;) and Q((i, p), M) =
Q(P» mi) + Zmi¢mj€M (V(m])

Here we denote V (m;) with a single parameter as the state value
function that can be readily computed by maximizing over the
discrete action space:

V(m;) = pen;?;(z_) O(p, my). (7)

Under the composable assumption on the Q-function, we derive the
following dual-state Bellman loss:

Emipy v ryenllr + YV (m)) + YV (ml) = Q(p, my)|I%, ®)

where the expectation is taken over a replay buffer D of transition
tuples. Note that our Bellman loss is only related to the chosen com-
ponent m; instead of the entire state M, making it computationally
efficient to evaluate. We use the standard deep soft Q-learning pro-
cedure [Haarnoja et al. 2017], with Equation 8 replacing the original
Bellman loss. Note that we introduce two different discount factors
v} and y” for the two Q-functions after plane cutting. In the standard
setting, we can simply set y/ = y” = y. However, our experiments
show that using different y for the two mesh components leads to
better training convergence speed. In practice, we set y* and y” to
be the relative convex hull volume, i.e.:

y' = ICH(m))|/ICH(my)|,y" = |CH(m})|/ICH(my)|. (9

Note that such design ensures the inequality y' + y* < 1 holds
because the two components mf and m] are non-overlapping after
plane cutting. The above inequality ensures Q-learning convergence
in the tabular setting, as discussed in our supplementary materials,
and serves as a strong indicator of convergence under general neural

policy representations.

4 Experiments

In this section, we detail our training and deploy steps, experimental
setup, ablation study, and evaluations.

4.1 Network Training

All experiments were conducted on a workstation equipped with
an AMD Ryzen 9 7950X3D 16-Core CPU, and an NVIDIA RTX
3090 GPU. For the Soft Q-learning implementation, we leveraged
PyTorch with a lightweight multi-layer perceptron(MLP) policy
network. The network architecture comprised four fully connected
layers with dimensions {1024, 512, 256, 128}, interleaved with ReLU
activation functions, mapping state representations to action-value
predictions through nonlinear transforms. Training employed a
1 X 10%-capacity experience replay buffer over 1 X 10° iterations.
Exploration combined initial 1 x 10* random steps for network
initialization, followed by e-greedy search (initial € = 0.2, decay rate
0.99 per 1 x 10° steps). Each mesh component was sampled with
2,048 points, using reward weights A; = A, = 1 x 10® for objective

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:6 + Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yigian Wu, Xiaogang Jin, and Xifeng Gao

Input A CoACD
A

) e

rx---=-

|

#F: 100K

#F: 183K

46/0.07/9.9K/47.3

#F:344K 71/0.09/13.2K/95.1

g »

\

! A \\\\ .
——

NavACD Ours

N

18/0.05/4.3K /4.0

32/0.06/6.7K/18

32/0.08/7.8K/0.9 25/0.08/7.0K/ 4.6

Fig. 5. Comparison with CoACD [Wei et al. 2022] and NavACD [Andrews 2024]. Numbers below each result indicate the number of convex parts, Hausdorff
distance, face number, and decomposition time (s). Close-up views highlight decomposition quality.

balancing. The total training time was approximately 9 hours on
the aforementioned workstation.

During training, CoACD’s concavity metric enforced geomet-
ric constraints (f, = 4%) for surface-volume preservation. The ac-
tion space P (m;) contained 150 planes: 25 equidistant along global
x/y/z-axes, 25 along component PCA axes, all origin-centered with
1/25 unit spacing.

4.2 Algorithm Deployment

We integrated our learning module into Unreal Engine for deploy-
ment. Following NavACD [Andrews 2024]’s framework, we adopt
their navigation space paradigm as the decomposition termination
criterion, which effectively ignores unreachable internal surfaces
while accelerating convergence. To enhance cutting plane selection
efficacy, we extend the candidate plane pool by integrating convex
edge-derived planes through NavACD’s extraction protocol, though
we deliberately exclude concave edge sampling during training due
to their representation of high-frequency geometric details that
challenge our point cloud encoder’s capture capacity.

Deployment followed three stages: (1) Policy network inference
evaluates axis-aligned planes; (2) Top 10 network-predicted planes
combine with 12 NavACD-derived convex-edge planes; (3) Physi-
cal cutting selects optimal plane by minimal convex hull volume.
Post-processing merged redundant parts using NavACD’s protocol
(implementation details in NavACD Sections 4.1-5).

4.3 Datasets

We randomly sampled 1, 500 models from the ShapeNetCore [Chang
et al. 2015] dataset, with 80% of the data designated for training. To
enhance the robustness of our mesh cutting algorithm, we prepro-
cess the data with the Watertight Manifold algorithm [Huang et al.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

2018], which ensures the correct 2-manifold topology. Data augmen-
tation is incorporated during training through random rotations
applied to the input meshes. We randomly select one of the principal
axes (x, y, or z) and a rotation angle from the set (0, /4, 7/2, 7). A
rotation matrix is then calculated based on these selections, relative
to the mesh’s centroid, and applied to the mesh.

4.4 Baselines

We compare our method to V-HACD [Mamou et al. 2016], CoACD
[Wei et al. 2022], and NavACD [Andrews 2024] on the test dataset.
Specifically, for CoACD and NavACD, we fine-tune their concavity
measure parameter thresholds to obtain decomposition results with
the same average Hausdorff distance, i.e. D, = 0.15 and Dy = 0.10
of Table 1. Our method follows NavACD’s navigation space param-
eters since we also use navigation space as our stopping criterion.
For V-HACD, since it controls decomposition by manually setting
the desired number of components for each model, we compare
against V-HACD under the condition of having the same number of
components. Complete test data and statistics are in supplementary
material.

4.4.1 Comparison with CoOACD and NavACD. CoACD is configured
with two precision levels for decomposition: ¢, = 12% and t, = 4%.
NavACD and our method use two different precision levels for the
navigable space: (1) r = 2.5%,¢t = 5% and (2) r = 5.0%,t = 1%.
We conducted experiments on the ShapeNet test dataset with 305
models, and the average results are shown in Table 1.

CoACD, due to its MCTS algorithm, requires extensive cutting
computations for each decision, resulting in significant time con-
sumption (see the t (s) column of Table 1). NavACD’s single-step
greedy search strategy, combined with its extremely limited search

space, leads to some unnecessary cuts (see the # P column of Table
1). Our method, incorporating lightweight network inference and
limited cutting computations, effectively optimizes the cutting plane
selection process. Consequently, we achieve the desired decomposi-
tion precision with the fewest convex components (the # P column
in Table 1). Since the number of triangles in the convex hulls plays a
critical role in some applications, we also compare this metric in our
experiment, where our method achieves the lowest triangle count
(see the # F column in Table 1). More visual comparisons are shown
in Figure 5 and Figure 11.

Table 1. ShapeNet decomposition performance (format: mean]3}). Pa-
rameters: f.=convexity threshold(%), r=navigation space’s radius(%),
t=navigation spaces’s tolerance distance(%). Metrics: Dp=Hausdorff dis-
tance, #P=part count, #F=face count (k=x10%), T=computation time.

Method (Params) Dy | #P | #F (k)| T()l
0.38 54 22.6 99.3
CoACD (£,12) 0.15938 10.7% 5526 21.9%3,
0.31 278 47.7 233.5
CoACD (t.4) 0.1093L, 44.278 . 10477 52.3235
NavACD (r2.5,#5) 0.15%03, 6.93% 2759 0.3L¢,
0.29 184 22.8 3.7
NavACD (r5, ¢1) 0.10505 30-5i3p5 6735 13506
0.45 32 9.4 7.1
Ours (r2.5,15) 015985 6.0%, 2621 137,
0.31 163 217 12.6
Ours (r5, 1) 010931, 259! 6.2217 36129
Input V-HACD Ours

q =
T

| A MY

—_— =

45/0.06/9.1K /4.9

- -
. .
. .
. .
- -
. .
. . I

1 Ba
#F: 231k 11/0.13/0.5K/ 1.0 11/0.11/51K /4.8
,
'/ n
,
,
,
#F: 110k 26/013/1.7K/ 1.7 26/0.09/48K/2.6

Fig. 6. Comparison with V-HACD [Mamou et al. 2016] using the same num-
ber of decomposed parts. Numbers below each result indicate the number
of convex parts, Hausdorff distance, face number, and decomposition time
(s). Close-up views highlight decomposition quality.

4.4.2 Comparison with V-HACD. We compared our method with
V-HACD, ensuring an equal number of convex components for

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition « 271:7

both. The average Hausdorff distances between V-HACD results
and origin shapes at different precision levels are 0.19 and 0.14. Due
to the voxel-based preprocessing in V-HACD, its fitting accuracy
suffers significantly. Our method, in contrast, achieves superior
geometric quality in the decomposition results, as demonstrated in
Figure 6, which highlights the visual differences between the two
methods.

4.4.3 Comparison with Single-Step Greedy Algorithm. To validate
the benefits of our policy network arising from its long-term decision-
making capabilities, we compare it against a single-step greedy algo-
rithm. Within the high-precision navigable space setting, we replace
our policy module with this greedy algorithm, which is specifically
designed to select cutting planes. In the greedy approach, at each
decomposition step, all candidate planes are evaluated by simulat-
ing the cut operation, and the plane that minimizes the combined
convex hull volume is selected.

On the ShapeNet test set, the greedy algorithm yields an average
of 28.3 convex hull components, requires 13.2 seconds for decom-
position, and achieves an average Hausdorff distance of 0.10. By
contrast, our policy network achieves a significantly reduced num-
ber of 25.9 components and a decomposition time of 3.6 seconds.
While the Hausdorff distance accuracy of our method matches that
of the greedy baseline, our approach outperforms in minimizing de-
composed components and reducing computational time. This com-
parison highlights the benefits of our method’s long-term decision-
making perspective, which ultimately improves performance by
reducing the reliance on computationally expensive actual cutting
operations.

4.5 Ablation Study

In this section, we explore the effectiveness of different components
in RL-ACD. We utilize our final solution with high precision as the
baseline for ablation and report the number of decomposed parts
for comparison.

4.5.1 Candidate Plane Configurations. We first evaluated the influ-
ence of three distinct candidate plane categories—spatial axis-align
planes, PCA axis-align planes, and concave-edge planes—on convex
decomposition efficacy. As quantified in Table 2, the synergistic
integration of all three plane types yields optimal decomposition
outcomes, minimizing component count and mesh face complexity
while maintaining geometric fidelity.

Table 2. Quantitative results of the ablation study of candidate plane con-
figurations. Different types of planes are beneficial to reducing the number
of components.

Candidate Planes Dp|l | #P | | #F (k)] | T(s)|
All planes 0.10 | 25.9 6.2 3.6
W/O spatial axis-align planes | 0.10 | 29.4 6.6 4.3
W/O PCA axis-align planes 0.10 | 27.9 6.3 4.5
W/O concave-edge planes 0.10 | 28.6 6.6 3.2

Number of Axis-align Planes. We systematically evaluated how se-
lecting different quantities of high-value axis-aligned cutting planes

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:8 + Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yigian Wu, Xiaogang Jin, and Xifeng Gao

(from the RL model’s 150 predicted candidates) impacts decomposi-
tion performance during deployment (Table 3, left). We observed
that when the number of selected cutting planes is too few (e.g.,
1 or 5), the policy results might be unstable due to randomness
in network sampling. As the number of cutting computations in-
creases, the computation time significantly increases. Meanwhile,
the number of resulting parts initially decreases and then increases.
This phenomenon arises because, with an increasing number of cuts,
the algorithm progressively adopts a single-step greedy strategy,
thereby reducing the effectiveness of the long-term reward-focused
agent. Notably, when the number of calculated cuts reaches 150, the
algorithm essentially performs as a single-step greedy method. We
discovered that choosing ten planes with the highest action value
for cutting yields excellent decomposition results with the least
computational burden, achieving good model stability and global
rewards.

Table 3. Quantitative ablation study: Impact of axis-aligned planes (#AP)
and concave edges (#CE) counts. Our configuration (10 #AP + 4 #CE) bal-
ances component reduction (#P]) and computation time (T(s)]).

Axis-aligned Planes (#AP) | Concave Edges (#CE)
#AP | #P| T(s)) #CE | #P) | T(s))

1 29.4 2.8 0 28.6 3.2

5 27.8 3.1 2 26.4 3.5

10 25.9 3.6 4 25.9 3.6

20 25.8 4.9 8 27.1 44

50 26.3 7.7 16 26.5 4.9
100 | 26.8 12.4 32 26.3 6.0
150 | 28.3 13.2 64 | 26.1 8.4

Number of Concave Edges. Following NavACD [Andrews 2024],
we further analyzed the cost-benefit trade-off of varying the num-
ber of sampled concave edges (Table 3, right). In our method, we
observed that the average number of decomposed components does
not consistently decrease as the number of sampled concave edges
increases. This occurs because additional planes generated by sam-
pling more concave edges weaken the influence of the axis-aligned
values predicted by our policy, causing the decomposition results
to increasingly align with those of a greedy algorithm.

4.5.2 State Encoding. For the design of the state space, we evaluated
the number of components required after removing the encoded
features of convex hull sampling. The number of components re-
quired was 26.6 (vs 25.9), indicating the importance of the convex
hull feature to achieve efficient decomposition.

4.5.3 Reward Function. We evaluated the impact of various reward
weights on the experimental outcome. When the reward term r; was
omitted, the number of components required was 27.3, and without
the reward term r, it was 27.1. Regarding the reward weights, the
component counts were 27.0, 26.9, 25.9, 26.7, and 26.8 (vs 25.9)
for A1/A; = 0.01, 0.1, 1, 10, and 100, respectively. These results

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

underscore the importance of each reward term and the need to
appropriately weight them to optimize the decomposition process
and minimize the number of components.

4.54 Discount factors. As analyzed in Section 3.5, discount factors
v\, y" govern training convergence. Figure 7 shows training loss di-
vergence when y! +y” > 1. Our handcrafted heuristic setup achieves
faster convergence than baselines via balanced reward distribution,
with detailed theoretical proofs in supplementary material.

Loss Y=y =1
—V'=y =08
le+6 —yl=y =05

ours

Te+4

Training step

Fig. 7. Analyzes training convergence dynamics under varying discount
factors (y%,y”). Results demonstrate that y! + y” < 1 (empirically set
to relative convex hull volumes) ensures stable Q-learning convergence,
outperforming static discounting schemes.

4.6 Generalization

Our model was initially trained on the ShapeNet, which primarily
consists of man-made models (e.g., chairs, tables, and lamps). To
rigorously evaluate its cross-domain generalization capability, we
conducted zero-shot transfer tests on two unseen datasets: Human-
Body [Maron et al. 2017] and COSEG [Wang et al. 2012]. For each
target dataset, we randomly selected 20 models and applied our
pre-trained model directly without fine-tuning or retraining. As
shown in Figure 8 and Table 4, our model still achieved competitive
performance relative to previous methods. We attribute this general-
ization capability to the partially observable assumption underlying
our point cloud encoding strategy: by only requiring encoding of
a small mesh component, the network exhibits low sensitivity to
the global geometric structure of meshes, thereby enabling strong
cross-dataset performance.

- . [
t v S f

< e R }
\' ‘. e ‘,)B’

46/0.13/51K/4.1

#F: 114k 20/0.08/6.1K/29 #F: 42k
/ ‘ f J
v 4{’ > N ¢
1))
#F:318k 28/009/129K/50 #F 162k 31/011/ 117K/ 49

Fig. 8. RL-ACD decomposition results on the HumanBody (left) and COSEG
(right) datasets. Our method demonstrates good generalization capability
across different categories of previously unseen data.

Table 4. Quantitative results on the HumanBody and COSEG datasets,
validating RL-ACD’s generalization capability to unseen geometries.

Dataset Method Dpl | #P | | #F (k)] | T(s) !
CoACD (t.4) 0.22 | 23.4 8.2 22.5
HumanBody | NavACD (r5,¢1) | 0.18 | 22.2 8.3 1.0
Ours (75, t1) 0.17 | 20.2 8.1 3.7
CoACD (t.4) 0.15 | 33.1 7.7 23.8
COSEG NavACD (r5,¢1) | 0.13 | 32.8 9.0 1.1
Ours (75, ¢1) 0.13 | 29.6 8.6 4.3

We conducted extended evaluations on high-genus models with
complex topological structures to assess decomposition robustness.
As demonstrated in Figure 9, while all comparative methods preserve
original genus characteristics under optimized parameter configu-
rations, our approach achieves superior component efficiency.

Input CoACD NavACD Ours
- z __

42 hulls 35 hulls 30 hulls

o &9

232 hulls 230 hulls 217 hulls

yof "zv;‘
;.

Fig.9. Evaluates decomposition results on high-genus models with complex
topologies. RL-ACD reduces component counts by 10% compared to baseline
methods, demonstrating superior handling of intricate geometric features.

5 Conclusion and Discussion

We presented RL-ACD, a reinforcement-learning-based approach to
approximate convex decomposition. This marks the first application
of data-driven reinforcement learning techniques to tackle the well-
established ACD problem. Under our innovative assumptions, we
facilitate the use of a lightweight neural policy to approximate
near-optimal multi-step decision rewards. This enables RL-ACD to
surpass existing methodologies in terms of convex decompositions
while maintaining interactive performance suitable for real-time
applications. As a result, our approach yields more efficient ACD
results for downstream applications, significantly enhancing the 3D
asset creation workflow.

Notwithstanding its advantages, RL-ACD exhibits limitations.
The reliance on predefined candidate planes and a static feature en-
coder may constrain its ability to identify optimal cuts for complex
geometries, and suboptimal decomposition occurs when processing
smooth residual meshes lacking discriminative geometric features,
as shown in Figure 10. These failures stem primarily from the feature
extractor’s inability to encode homogeneous surfaces effectively.

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition « 271:9

Fig. 10. lllustrates a failure mode in smooth, featureless geometries. Limited
surface discriminability hinders the policy’s ability to identify optimal cuts,
highlighting opportunities for enhanced feature encoding in future work.

The identified limitations highlight promising avenues for future
research, including exploring advanced state encoding techniques
to capture complex geometries better, incorporating real-time feed-
back mechanisms to dynamically adapt the cutting strategy, and
developing methods for dynamically generating candidate planes
focused on areas of high concavity to expand the search space and
potentially identify more optimal cuts. Finally, optimizing the rein-
forcement learning training process could improve efficiency and
reduce computational requirements, ultimately enhancing the ro-
bustness and adaptability of RL-ACD for a wider range of complex
shapes and scenarios.

Acknowledgments

Xiaogang Jin was supported by the National Natural Science Foun-
dation of China (Grant Nos. 62036010, 62472373).

References

James Andrews. 2024. Navigation-driven approximate convex decomposition. In ACM
SIGGRAPH Conference Papers.

Chanderjit L Bajaj and Tamal K Dey. 1992. Convex decomposition of polyhedra and
robustness. SIAM J. Comput. 21, 2 (1992), 339-364.

Chandrajit L Bajaj and Valerio Pascucci. 1996. Splitting a complex of convex polytopes
in any dimension. In Proceedings of the Twelfth Annual Symposium on Computational
Geometry. 88-97.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. ShapeNet:
An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015).

Zhigin Chen, Andrea Tagliasacchi, and Hao Zhang. 2020. BSP-Net: Generating compact
meshes via binary space partitioning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 45-54.

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and
Andrea Tagliasacchi. 2020. CvxNet: Learnable convex decomposition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 31-44.

Niklas Freymuth, Philipp Dahlinger, Tobias Wiirth, Simon Reisch, Luise Karger, and Ger-
hard Neumann. 2023. Swarm reinforcement learning for adaptive mesh refinement.
Advances in Neural Information Processing Systems 36 (2023), 73312-73347.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. 2017. Reinforcement
learning with deep energy-based policies. In Proceedings of the IEEE International
Conference on Machine Learning (ICML). 1352-1361.

John E Hershberger and Jack S Snoeyink. 1998. Erased arrangements of lines and
convex decompositions of polyhedra. Computational Geometry 9, 3 (1998), 129-143.

Jingwei Huang, Hao Su, and Leonidas Guibas. 2018. Robust watertight manifold surface
generation method for ShapeNet models. arXiv preprint arXiv:1802.01698 (2018).

Barry Joe. 1994. Tetrahedral mesh generation in polyhedral regions based on convex
polyhedron decompositions. Internat. . Numer. Methods Engrg. 37, 4 (1994), 693-713.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Planning
and acting in partially observable stochastic domains. Artificial Intelligence 101, 1
(1998), 99-134.

Sinan Kockara, Tansel Halic, Kamran Igbal, Coskun Bayrak, and Richard Rowe. 2007.
Collision detection: A survey. In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC). 4046—-4051.

Jyh-Ming Lien and Nancy M Amato. 2004. Approximate convex decomposition. In
Proceedings of the Twentieth Annual Symposium on Computational Geometry. 457
458.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:10 « Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yigian Wu, Xiaogang Jin, and Xifeng Gao

Jyh-Ming Lien and Nancy M Amato. 2007. Approximate convex decomposition of
polyhedra. In Proceedings of the ACM Symposium on Solid and Physical Modeling.
121-131.

Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, and Dinesh Manocha. 2018. Fluid
Directed Rigid Body Control using Deep Reinforcement Learning. ACM Transactions
on Graphics (TOG) 37, 4 (2018), 1-11.

Khaled Mamou and Faouzi Ghorbel. 2009. A simple and efficient approach for 3D
mesh approximate convex decomposition. In Proceedings of the IEEE International
Conference on Image Processing (ICIP). 3501-3504.

Khaled Mamou, E Lengyel, and A Peters. 2016. Volumetric hierarchical approximate
convex decomposition. Game Engine Gems 3 (2016), 141-158.

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,
Vladimir G Kim, and Yaron Lipman. 2017. Convolutional neural networks on surfaces
via seamless toric covers. ACM Transactions on Graphics (TOG) 36, 4 (2017), 71.

Francisco S Melo. 2001. Convergence of Q-learning: A simple proof. Institute of Systems
and Robotics, Tech. Rep (2001), 1-4.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. 2015. Human-level control through deep reinforcement learning. Nature 518,
7540 (2015), 529-533.

Joseph O’Rourke and Kenneth Supowit. 1983. Some NP-hard polygon decomposition
problems. IEEE Transactions on Information Theory 29, 2 (1983), 181-190.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. 2018. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Transactions On Graphics (TOG) 37, 4 (2018), 1-14.

Martin L Puterman. 1990. Markov decision processes. Handbooks in Operations Research
and Management Science 2 (1990), 331-434.

Zhou Ren, Junsong Yuan, Chunyuan Li, and Wenyu Liu. 2011. Minimum near-convex de-
composition for robust shape representation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV). 303-310.

Jia-Mu Sun, Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas Guibas, and Lin Gao. 2024.
Haisor: Human-aware Indoor Scene Optimization via Deep Reinforcement Learning.
ACM Trans. Graph. 43, 2, Article 15 (Jan. 2024), 17 pages. doi:10.1145/3632947

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction.
MIT press.

Daniel Thul, Lubor Ladicky, Sohyeon Jeong, and Marc Pollefeys. 2018. Approximate
convex decomposition and transfer for animated meshes. ACM Transactions on
Graphics (TOG) 37, 6 (2018), 226.

Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and
Qiguang Miao. 2022. Deep reinforcement learning: A survey. IEEE Transactions on
Neural Networks and Learning Systems 35, 4 (2022), 5064-5078.

Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao Zhang, Daniel Cohen-Or, and
Baoquan Chen. 2012. Active co-analysis of a set of shapes. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 165.

Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. 2022. Approximate convex de-
composition for 3d meshes with collision-aware concavity and tree search. ACM
Transactions on Graphics (TOG) 41, 4 (2022), 42.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016.
Learning a probabilistic latent space of object shapes via 3d generative-adversarial
modeling. Advances in Neural Information Processing Systems (NIPS) 29 (2016),
82-90.

Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao. 2023. Learning based 2D
irregular shape packing. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1-16.

Renrui Zhang, Liuhui Wang, Yu Qiao, Peng Gao, and Hongsheng Li. 2023. Learning 3d
representations from 2d pre-trained models via image-to-point masked autoencoders.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 21769-21780.

Hang Zhao, Zherong Pan, Yang Yu, and Kai Xu. 2023. Learning physically realizable
skills for online packing of general 3D shapes. ACM Transactions on Graphics (TOG)
42, 4 (2023), 165.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

https://doi.org/10.1145/3632947

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition « 271:11

Input V-HACD CoACD NavACD Ours
#F:. 180K 21/0.07/1.8K/0.9 63/0.06/11.7 K/ 46.6 28/0.06/6.0K/ 1.1 21/0.06/53K/3.1
#F: 105K 18/0.09/1.2K/ 0.6 24/0.06/7.2K/19.8 24/0.06/5.5K/ 1.0 18/0.06 /46K /19
#F:108 K 14/0.11/0.6 K/ 0.6 21/0.06/54K/19.9 17/0.09/4.5K /0.6 14/0.07/44K/ 1.8
#F: 183K 26/0.11/23K/ 1.1 77/0.10/ 154 K/ 82.1 32/0.10/ 84K/ 1.2 26/0.09/76K/28

#F: 114K 3/0.15/0.3K/2.0 4/0.14/99K /187 5/0.14/4.6K /0.9 3/0.14/41K/ 1.0

>

#F:419K 21/0.12/1.4K/ 1.6 86/0.11/127K/81.9 26/0.12/ 63K/ 2.1 21/0.10/58K/5.6

Fig. 11. Comparison with V-HACD [Mamou et al. 2016], CoACD [Wei et al. 2022] and NavACD [Andrews 2024]. Numbers below each result indicate the
number of convex parts, Hausdorff distance, face number, and decomposition time (s). ©2025 ShapeNET.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:12 « Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yigian Wu, Xiaogang Jin, and Xifeng Gao

Appendix
A Convergence Analysis

We analyze the convergence of our proposed dual-state Q-learning
algorithm and show that our parameter choice for the discount
factor is key to convergence. We emphasize that our analysis should
not be considered as a convergence proof. Indeed, the convergence
of deep Q-learning is very challenging due to the approximation
error of neural network. Instead, we only assume a tabular setting,
where we store and learn Q-values over all state-action pairs and
a fixed horizon, but we believe that such analysis provides useful
indications for choosing the two key parameters for the discount
factor. Specifically, we take the following assumption:

ASSUMPTION 1. Our training setup assumes:
e The dataset contains a finite number of N meshes m% N,
o The feature of each mesh component s(m]) is precomputed.

e The horizon is at most H.

Assumption 1 exactly matches our experimental setup. We have
the following immediate result due to this setup:

LEMMA A.1. Under Assumption 1, the number of possible states M
and encoded features s(m;) is finite.

Proor. We can consider s(e) as a deterministic function due
to our assumption that s(e) is precomputed, so we only need to
show that the number of possible states M and components m{ is
finite. For a possible state s(m{) experienced during Q-learning, the
superscript j is finite due to the assumed finiteness of dataset. The

subscript i is also finite by induction over H possible cut operations.

Base Step: The starting state is M = {m/}, which is finite. Inductive
Step: Assuming the number of possible states M is finite, then a state
M’ =T(M,(i,p)) can only be derived by cutting some m; € M
using one of 3 types of cutting planes: 1) axis-aligned cutting planes;
2) primary axes aligned cutting planes; 3) planes aligned with convex
edges. The number of each type of these cutting planes is finite, so
the number of possible states M’ is finite. O

Lemma A.1, allows us to consider a Q-learning algorithm in a
tabular setting, where we store the finite number of action values
Q(p, m;) in a table (superscript j omitted for brevity, because the
learning problem for each mesh is separate during training in a
tabular setting). We have the following result:

ProrosITION A.2. Under Assumption 1 and using a tabular policy,
the Q-learning algorithm minimizing the expected dual-state Bellman
el
loss converges if vy, + Y, p < 1.

Proor. We can adopt the tabular policy due to Lemma A.1, so
the problem setup is well-defined. We adopt the argument in [Melo
2001], where the goal is to prove that Q-learning converges to a
fixed point. In our case, given the following sampled data tuple with
non-vanishing probability:

M. Gp) M 1),

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

at the tth update, our Q-learning update formula can be written as:
Qr1(p, mi) = Qe(p, mi) + ar(p, m;)

r+yl max Qt(pl,m£)+
pleP(mﬁ)

Yo max Qu(p",m) — Qi(p.mi)|.
preP(my)

We can define our contraction operator H as:

HQ: (p, m;) =r+
yl max Qt(pl, mf) +y" max Q.(p",m]).
pleP(m) preP(my)

This operator is a contraction in the sup-norm, i.e.,

IHQ: = HQilloo < 1Qr — Qtllco-
To prove this, we write:

IHQ: — HQ;lleo = max

mi.p

1 11
Vg Max Or (p,) + 1, max Q1 (p, mi)—
p P

1 1 1
Yimi.p MaX Q4 (P, 1M3) = Y, max Qi (p".mj)
P

Qt(pls mf) - Q;(Pl’ mi)

|

Qi (p,my) — Qy(p, my)

+

1
<max . max
mi,p [Ym,,p Pl

Qi (p",my) = Qy(p", my)

.
Ymi,P H;frlx

|

Qi (p.mi) — Qy(p, my)

1 r
<max PN . max
map [(Ym,,p YM,,p) map

) r
<max PR . ma:
S max [(Ym,,p Ym,,p)} mi’;’(
1
=IrInla;)<(Ym,-,p + Ymap) 10 = Qtlleo < 11Qr = O} llco-
i

Here we introduce subscript for y,l,’,ri,p to indicate that their choices
are dependent on our state and action, but we always have ani,p +
Ym;,p < 1 by our construction. We also omit p € £ (m;) and P e
P(mg’r) for brevity. By the Banach fixed point theorem, there exists
a unique fixed point Q* with HQ* = Q*. The remaining argument
towards convergence follows from Theorem 2 of [Melo 2001]. O

Note that this is not the optimal Q-table by our assumption, which
suffices since we only aim to prove convergence.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 MDP Reformulation of ACD
	3.2 Partially Observable Assumption
	3.3 Policy Parameterization
	3.4 Action Space Discretization
	3.5 Q-Learning using Dual-state Bellman Loss

	4 Experiments
	4.1 Network Training
	4.2 Algorithm Deployment
	4.3 Datasets
	4.4 Baselines
	4.5 Ablation Study
	4.6 Generalization

	5 Conclusion and Discussion
	Acknowledgments
	References
	A Convergence Analysis

