
RL-ACD: Reinforcement Learning-based Approximate Convex
Decomposition
YUZHE LUO, State Key Lab of CAD&CG, Zhejiang University, China and LIGHTSPEED, China
ZHERONG PAN, LIGHTSPEED, USA
KUI WU, LIGHTSPEED, USA
XINGYI DU, LIGHTSPEED, USA
YUN ZENG, LIGHTSPEED, USA
XIANGJUN TANG, State Key Lab of CAD&CG, Zhejiang University, China
YIQIAN WU, State Key Lab of CAD&CG, Zhejiang University, China
XIAOGANG JIN∗, State Key Lab of CAD&CG, Zhejiang University, China
XIFENG GAO∗, LIGHTSPEED, USA

Fig. 1. In complex scenarios (10 dense meshes, 189k faces) (left), RL-ACD decomposes models via a lightweight neural policy, predicting near-optimal cutting
planes to generate 216 compact convex hulls (right) at 2.6s/model while preventing sub-optimal cuts from prior solutions.

Approximate Convex Decomposition (ACD) aims to approximate complex

3D shapes with convex components, which is widely applied to create com-

pact collision representations for real-time applications, including VR/AR,

interactive games, and robotic simulations. Efficiency and optimality are

critical for ACD algorithms in approximating large-scale, complex 3D shapes,

enabling high-quality decompositions with minimal components. Unfor-

tunately, existing methods either employ sub-optimal greedy strategies or

∗
Corresponding authors.

Authors’ Contact Information: Yuzhe Luo, yzluo@zju.edu.cn, State Key Lab of CAD&CG,

Zhejiang University, China and LIGHTSPEED, China; Zherong Pan, zherong.pan.usa@

gmail.com, LIGHTSPEED, USA; Kui Wu, walker.kui.wu@gmail.com, LIGHTSPEED,

USA; Xingyi Du, du.xingyi@wustl.edu, LIGHTSPEED, USA; Yun Zeng, iamzengxiang@

gmail.com, LIGHTSPEED, USA; Xiangjun Tang, Xiangjun.Tang@outlook.com, State

Key Lab of CAD&CG, Zhejiang University, China; Yiqian Wu, onethousand1250@

gmail.com, State Key Lab of CAD&CG, Zhejiang University, China; Xiaogang Jin,

jin@cad.zju.edu.cn, State Key Lab of CAD&CG, Zhejiang University, China; Xifeng

Gao, gxf.xisha@gmail.com, LIGHTSPEED, USA.

ACM 1557-7368/2025/12-ART271

https://doi.org/10.1145/3763270

rely on computationally intensive multi-step searches. In this work, we

propose RL-ACD, a data-driven, reinforcement learning-based approach for

efficient and near-optimal convex shape decomposition. We formulate ACD

as a Markov Decision Process (MDP), where cutting planes are iteratively

applied based on the current stage’s mesh fragments rather than the entire

fine-grained mesh, leading to a novel, efficient geometric encoding. To train

near-optimal policies for ACD, we propose a novel dual-state Bellman loss

and analyze its convergence using a Q-learning algorithm. Comprehensive

evaluations across diverse datasets validate the efficiency and accuracy of

RL-ACD for convex decomposition tasks. Our method outperforms the multi-

step tree search by 15× in terms of computational speed, while reducing the

number of resulting components by 16% compared to the current state-of-

the-art greedy algorithms, significantly narrowing the sub-optimality gap

and enhancing downstream task performance.

CCS Concepts: • Computing methodologies→ Shape modeling.

Additional Key Words and Phrases: Mesh Decomposition, Reinforcement

Learning

ACM Reference Format:
Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang,

Yiqian Wu, Xiaogang Jin, and Xifeng Gao. 2025. RL-ACD: Reinforcement

Learning-based Approximate Convex Decomposition. ACM Trans. Graph.
44, 6, Article 271 (December 2025), 12 pages. https://doi.org/10.1145/3763270

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

https://orcid.org/0009-0008-5796-6144
https://orcid.org/0000-0001-9348-526X
https://orcid.org/0000-0003-3326-7943
https://orcid.org/0000-0001-6036-6782
https://orcid.org/0009-0004-6104-4434
https://orcid.org/0000-0001-7441-0086
https://orcid.org/0000-0002-2432-809X
https://orcid.org/0000-0001-7339-2920
https://orcid.org/0000-0003-0829-7075
https://orcid.org/0009-0008-5796-6144
https://orcid.org/0000-0001-9348-526X
https://orcid.org/0000-0003-3326-7943
https://orcid.org/0000-0001-6036-6782
https://orcid.org/0009-0004-6104-4434
https://orcid.org/0000-0001-7441-0086
https://orcid.org/0000-0002-2432-809X
https://orcid.org/0000-0001-7339-2920
https://orcid.org/0000-0003-0829-7075
https://orcid.org/0000-0003-0829-7075
https://doi.org/10.1145/3763270
https://doi.org/10.1145/3763270
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763270&domain=pdf&date_stamp=2025-12-04

271:2 • Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yiqian Wu, Xiaogang Jin, and Xifeng Gao

State
Embedding

State
Embedding

Action
Decode

Evaluation

State
EmbeddingAgent …

Action
Decode

Agent

Evaluation

𝑚 Dℎ

M M M

D0 D1 D2

𝑠 (𝑚
0
) 𝑠 (𝑚

1
)

Fig. 2. The pipeline of RL-ACD: The input mesh𝑚 is processed iteratively, with each part𝑚𝑖 embedded into a state vector 𝑠 (𝑚𝑖) and evaluated by the agent
to determine the optimal cutting action. This process continues until all mesh components meet the predefined concavity threshold, indicating that the mesh
is fully decomposed into smaller convex components, forming Dℎ with ℎ being the number of decomposition steps.

1 Introduction
3D mesh-based geometric processing tasks like collision detec-

tion [Kockara et al. 2007] face rising complexity with mesh intri-

cacy. In real-time applications like video games and VR/AR en-

vironments, detailed meshes are often substituted with low-cost

representations to enable faster collision detection. Similarly, in

robotics research, policy learning demands vast datasets generated

by simulators, further emphasizing the need for efficient mesh sim-

plifications. Approximate Convex Decomposition (ACD) algorithms

are widely employed for these purposes, as they approximate de-

tailedmeshes using limited convex components. However, achieving

both efficiency and near-optimality in ACD algorithms remains a

significant challenge. For time-critical applications, practitioners

seek near-optimal decompositions with the fewest possible compo-

nents. Moreover, these algorithms must efficiently process tens of

thousands of objects in large virtual environments, requiring rapid

computations.

Existing ACD algorithms typically follow a common recipe con-

sisting of two crucial components: 1) a concavity metric to measure

how closely the decomposed components match their convex hulls;

and 2) a decomposition strategy that recursively cuts the mesh

with planes to reduce the concavity metric while using a minimal

number of components. The choice of plane-selection strategy in

this process significantly affects the quality of the decomposition.

Unfortunately, most existing methods, such as V-HACD [Mamou

et al. 2016], Thul et al. [2018], and NavACD [Andrews 2024] rely

on sub-optimal greedy strategies, leading to shortsighted results

with considerable redundant convex components. CoACD [Wei et al.

2022] introduces the Monte Carlo Tree Search (MCTS) to determine

the cutting planes. Using a multistep search strategy, MCTS can

achieve better decomposition results with fewer convex compo-

nents. However, MCTS requires simulating plane cuts over multiple

steps using a trial-and-error approach, leading to significant com-

putational overhead.

To achieve both accuracy and efficiency, we introduce Reinforce-

ment Learning-based ACD (RL-ACD). We train a lightweight neu-

ral policy network to predict the optimal cutting planes for mesh

components, achieving both low policy inference cost and nearly

optimal decomposition results. The primary challenge lies in the

vast state space arising from the intricate mesh geometry. Indeed,

identifying near-optimal cutting planes necessitates a policy atten-

tive to fine-grained mesh details, traditionally requiring a high-

resolution 3D state encoder. Training such detailed encoders can be

both computation- and data-intensive. To address this challenge, we

formulate the problem as a Markov Decision Process (MDP) with

a novel policy representation. Our policy proposes cutting planes

solely based on the mesh component being cut, rather than the

entire mesh to start with. We show that our partial observation can

be effectively encoded using standard point cloud features [Zhang

et al. 2023]. To train our neural policies effectively, we propose a

novel dual-state Bellman loss that approximates the value function

of a plane-cut using the value sum of two after-cut components. Our

analysis reveals that our modified Bellman loss leads to convergent

Reinforcement Learning (RL) algorithm and our evaluations high-

light that our decomposition policy exhibits superior performance

compared to state-of-the-art baselines, achieving fewer convex com-

ponents than NavACD [Andrews 2024] and CoACD [Wei et al. 2022],

as well as significantly lower inference cost than CoACD. In sum-

mary, our work makes the following major contributions:

• Novel formulation of ACD as MDP with partial observation.

• Dual-state Bellman loss for efficient ACD policy learning.

2 Related Work
We discuss the optimality and efficacy of prior works on exact and

approximate ACD, while also exploring related machine learning

algorithms that are related to ACD.

Exact Convex Decomposition. These algorithms aim to decom-

pose a 3D model into the fewest exact convex components, a task

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition • 271:3

proven to be NP-Hard [O’Rourke and Supowit 1983]. Heuristic tech-

niques [Bajaj and Dey 1992; Bajaj and Pascucci 1996; Hershberger

and Snoeyink 1998; Joe 1994] have been proposed to reduce com-

plexity, but even advanced solvers frequently produce too many

components, rendering them impractical for real-world applications.

Approximate Convex Decomposition. Pioneered by Lien and Am-

ato [2004], ACD permits partial concavities in decomposed results

to reduce component count. Subsequent ACD heuristics primarily

differ in concavity metrics and plane-selection strategies. Concavity

metrics measure decomposition quality by comparing a mesh com-

ponent with its convex hull. The algorithm terminates when the con-

cavity metric is lower than a predefined threshold. These metrics fall

into three categories: (a) Surface-basedmetrics calculate geometric

differences between the mesh surface and its convex hull [Lien and

Amato 2004, 2007; Mamou and Ghorbel 2009]. (b) Volume-based
metrics measure volume differences [Andrews 2024; Mamou et al.

2016; Thul et al. 2018;Wei et al. 2022]. CoACD [Wei et al. 2022] uses a

hybrid collision-aware metric, while NavACD [Andrews 2024] incor-

porates navigation space constraints. (c) Visibility-based metrics

utilize the ratio of mutually visible points within the shape [Ren et al.

2011]. The plane-selection strategy significantly impacts ACD effec-

tiveness. Most techniques employ a greedy strategy that iteratively

selects cutting planes to minimize concavity. CoACD applies time-

consuming MCTS to approximate globally optimal plane search.

V-HACD [Mamou et al. 2016] and CoACD sample equidistant cut-

ting planes from each axis-aligned direction, while NavACD samples

from concave edges and uses three axis-aligned bisection planes.

However, these approaches may struggle with complex models due

to limited or shortsighted search spaces.

Learning-based ACD.. Methods like BSP-Net [Chen et al. 2020]

and CvxNet [Deng et al. 2020] rely on global feature encoding for

3D object representation using convex components. However, such

global encoding strategies fundamentally constrain their applica-

bility to industrial-scale complex models due to limited geometric

adaptivity. In contrast, our method formulates the problem as a

Markov Decision Process and trains a neural decomposition policy

to learn near-optimal cutting planes for complex shapes. As our

key innovation, our policy operates in a reduced observation space,

focusing solely on the mesh component being cut, instead of the

entire initial mesh. In this way, our policy can better attend to the

key feature of the mesh that affects the quality of the cutting plane.

Furthermore, we introduce a novel Bellman loss to facilitate policy

training using Q-learning [Sutton and Barto 2018].

Reinforcement Learning. RL aims at solving long-horizon decision-

making problems. The success of deep RL algorithms [Wang et al.

2022] has found abundant applications in computer graphics for

character animation [Peng et al. 2018], animation control [Ma et al.

2018], and object packing [Zhao et al. 2023], scene optimization [Sun

et al. 2024], to name just a few. The success of deep reinforcement

learning (RL) is largely based on the ability of deep neural networks

to represent optimal policies and value functions. However, RL has

seen limited application in geometry processing, with only a few

notable exceptions [Freymuth et al. 2023; Yang et al. 2023]. This is

primarily due to the ultra-high and variable-dimensional state spaces

inherent to geometric data, which often involve arbitrarily complex

shapes, posing significant challenges to the expressive capacity of

neural representations. In this work, we successfully adapt RL to

address the problem of convex decomposition, demonstrating its

potential in the geometric domain.

3 Methodology
This section details our approach, beginning with the problem for-

mulation and its subsequent MDP reformulation. We then introduce

our novel dual-state Bellman loss and the corresponding Q-learning

algorithm used for policy optimization.

As shown in Figure 2, the input of our ACD algorithm is a

solid mesh 𝑚, and the output is a set of mesh componentsM =

{𝑚1,𝑚2, · · · } such that ∪𝑚𝑖 ∈M =𝑚, and their corresponding con-

vex hull set D = {CH(𝑚1),CH(𝑚2), · · · }, where CH(𝑚𝑖) denotes
the convex hull of𝑚𝑖 . The ACD algorithm is equipped with a concav-

ity metric, denoted Concavity(𝑚𝑖), which measures the difference

between𝑚𝑖 and CH(𝑚𝑖). The goals of ACD are two-fold: 1) mini-

mize the number of components |M|, to improve the computational

efficiency of downstream applications, and 2) ensure thatD approx-

imates the original mesh𝑚 as tightly as possible by minimizing the

total concavity metric

∑
𝑚𝑖 ∈M Concavity(𝑚𝑖).

3.1 MDP Reformulation of ACD
We observe that the typical process of ACD, as described in prior

works [Andrews 2024; Mamou et al. 2016; Wei et al. 2022], can be

naturally formulated as a MDP [Puterman 1990]. These methods

iteratively select a component𝑚𝑖 ∈ M and choose a cutting plane

𝑝 to divide𝑚𝑖 into two sub-components,𝑚𝑙
𝑖 and𝑚

𝑟
𝑖 . The selection

of the cutting plane 𝑝 ∈ R4
depends on the current state of the

decomposition, i.e.,M. Thus, we define our ACD-MDP as the tuple

⟨S,A, 𝑟 ,𝑇 ,𝛾⟩, consisting of state space S, action space A, reward

function 𝑟 , state transition function 𝑇 , and discount factor 𝛾 . Our

state space consists of the current partial decomposition. In other

words, anyM is considered as a state so thatM ∈ S.
Our action space comprises two parts. First, we select a candidate

component𝑚𝑖 ∈ M for dissection and then choose a cutting plane

𝑝 . In other words, an action ⟨𝑖, 𝑝⟩ ∈ A is a tuple of the candidate

component index and the cutting plane. Our state transition function

employs a mesh Boolean operation to dissect𝑚𝑖 into𝑚
𝑙
𝑖 and𝑚

𝑟
𝑖 and

update the state through the state transition function:

𝑇 (M, ⟨𝑖, 𝑝⟩) =M′ ≜M ∪ {𝑚𝑙
𝑖 ,𝑚

𝑟
𝑖 } − {𝑚𝑖 }. (1)

Finally, we design our reward function, which is composed of two

terms. The first term 𝑟1 measures the reduction ratio of the convex

hull volume between before and after the plane-cut compared to

the origin solid mesh:

𝑟1 (M, ⟨𝑖, 𝑝⟩) =
[
|CH(𝑚𝑖) | − |CH(𝑚𝑙

𝑖) | − |CH(𝑚𝑟
𝑖) |

]
|CH(𝑚) | , (2)

where |CH(•) | is the volume of a convex hull. The second term

avoids excessive cuts in parts with minimal gain. We assign a com-

pletion reward after the decomposition ofM to encourage fewer

cuts:

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:4 • Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yiqian Wu, Xiaogang Jin, and Xifeng Gao

𝑟2 (M, ⟨𝑖, 𝑝⟩) = I[M′ is terminal]
1 + log(|M′ | − 1) , (3)

where I[M′ is terminal] is an indicator function that equals one

and only if the partial decomposition stateM′ meets the required

concavity threshold 𝜖 , i.e., Concavity(𝑚𝑖) < 𝜖 for each𝑚𝑖 ∈ M. If

M′ is the terminal state, 𝑟2 encourages the policy to use fewer cuts

by being inversely proportional to |M′ | − 1, which is the number

of cuts to reach the stateM′. Our ultimate reward is the sum of the

two terms above, i.e. 𝑟 = 𝜆1𝑟1+𝜆2𝑟2, with 𝜆1, 𝜆2 being the weights to
be fine-tuned. The goal of our work is to solve the MDP over a finite

horizon of ℎ steps, searching for a near-optimal policy 𝜋 (⟨𝑖, 𝑝⟩ |M)
that maximizes the cumulative reward.

3.2 Partially Observable Assumption
While deep neural policy learning techniques exhibit superior per-

formance in high-dimensional state and action spaces, applying

them to our ACD-MDP policy 𝜋 (⟨𝑖, 𝑝⟩ |M) presents two key chal-

lenges. First, the state space representing 3D mesh components has

a dynamic dimensionality stemming from the varying number of

mesh components during the decomposition process. Second, after

repeated plane cutting, the components𝑚𝑖 can become very small,

making it difficult to recognize geometric structural features.

To address these challenges, we adopt two techniques that signif-

icantly reduce the amount of information a neural policy needs to

encode. First, inspired by empirical studies such as [Zhao et al. 2023],

we discretize the action space. This design choice significantly re-

duces policy complexity because the network only needs to evaluate

a finite set of actions ⟨𝑖, 𝑝⟩ through a lightweight𝑄-function, rather

than modeling a continuous action distribution. With a discrete

action space, we can then represent the optimal policy using a state-

action value function 𝑄 (⟨𝑖, 𝑝⟩,M), which estimates the expected

cumulative reward obtained by taking action ⟨𝑖, 𝑝⟩ in stateM under

our policy 𝜋 (⟨𝑖, 𝑝⟩|M). The optimal policy can be solved via:

⟨𝑖, 𝑝⟩ ← argmax𝑖=1,· · · , |M |,𝑝∈P𝑄 (⟨𝑖, 𝑝⟩,M),
where P represents a pre-computed set of candidate cutting planes.

Second, to more efficiently represent the detailed mesh features,

we adopt a novel observation space. Observation function is typi-

cally used by Partially Observable MDP (POMDP) [Kaelbling et al.

1998] to model the partial environmental information that an agent

perceives. Although our problem setting allows the entire state to

be observed, the complete state is challenging for a neural network

to digest. Therefore, we borrow ideas from POMDP and introduce

an index-dependent observation function 𝑂 (M, 𝑖) that produces a
partial observation of the stateM, under the assumption that we

already know we want to cut the component𝑚𝑖 . In our problem,

we introduce a key assumption below:

To determine the optimal 𝑝 for 𝑚𝑖 ∈ M, the policy only

needs to observe the selected component𝑚𝑖 , readily ignoring

other componentsM − {𝑚𝑖 }.

Our assumption above is based on the observation that the reduc-

tion ratio of different convex hulls are used as reward signal 𝑟1 and

are thus additive. We then define the observation as 𝑂 (M, 𝑖) =𝑚𝑖

and simplify the neural policy to represent the reduced state-action

value function 𝑄 (𝑝,𝑚𝑖), again under the assumption that we know

𝑚𝑖 is to be cut, from which the optimal policy is solved via:

⟨𝑖, 𝑝⟩ = argmax𝑖=1,· · · , |M |,𝑝∈P(𝑚𝑖)𝑄 (𝑝,𝑚𝑖), (4)

where P(𝑚𝑖) is a set of candidate cutting planes computed exclu-

sively for𝑚𝑖 . This simplifying assumption effectively tackles the

challenges posed by dynamic state space dimensions and the de-

creasing component size as decomposition progresses recursively.

By parameterizing𝑄 as a neural network, its input becomes a single

mesh component instead of the entire setM of a changing size, al-

lowing us to normalize𝑚𝑖 for the 3D shape encoder, denoted as 𝑠 (•).
For instance, using a 3D voxel-based encoder [Wu et al. 2016], we

can re-scale𝑚𝑖 to occupy the entire voxel grid. Given such a policy,

our ACD procedure is summarized in Figure 2, where we iteratively

evaluate Equation 4 to choose the optimal candidate cutting plane

and perform the plane cutting until the concavity of all the mesh

components falls below a user-specified threshold 𝜖 .

3.3 Policy Parameterization
For our problem, the key to designing an efficient neural policy lies

in the choice of an effective 3D shape encoder. We opt for point

cloud-based encoding due to its robustness to variations in topology

and geometric complexity. While point cloud sampling may result

in some loss of geometric information, our procedure mitigates this

issue by sampling and normalizing each partial mesh component

during the iterative cutting process. This normalization, coupled

with a powerful point cloud encoder, allows for effective feature

extraction from the normalized components.

Specifically, as shown in Figure 3, for the current mesh compo-

nent𝑚𝑖 undergoing cutting, we uniformly sample a fixed number of

points on its normalized mesh surface. We then leverage pre-trained

I2P-MAE [Zhang et al. 2023] point cloud encoder for feature extrac-

tion, denoted as 𝐹 (𝑚𝑖). In addition to extracting features from the

mesh itself, we also compute the point cloud sampled features of

the mesh’s convex hull as part of the state, denoted as 𝐹 (CH(𝑚𝑖)).
As a result, we can define our state encoder as:

𝑠 (𝑚𝑖) = (𝐹 (𝑚𝑖), 𝐹 (CH(𝑚𝑖))) . (5)

Since for any 𝑚𝑖 we use the same number of candidate cutting

planes |P(𝑚𝑖) |, we can have the MLP output the state-action value

function of all the cutting planes in a single inference, denoted as:

𝑄 (𝑝 𝑗 ,𝑚𝑖) ≜ MLP𝑗 ◦ 𝑠 (𝑚𝑖), (6)

where MLP𝑗 is the 𝑗th output of the MLP. This combined with

Equation 4 completes our parameterization of the policy.

3.4 Action Space Discretization
As previously discussed, the possible cutting planes for𝑚𝑖 could be

any plane in space that intersects𝑚𝑖 . However, training a decision

model by sampling from the entire continuous 3D plane space using

a Gaussian distribution has proven ineffective [Zhao et al. 2023].

Therefore, we choose to discretize the action space by extending the

previous methods’ search spaces [Andrews 2024; Thul et al. 2018;

Wei et al. 2022]. For each mesh component, as shown in Figure 4,

our discrete candidate planes consist of the following components:

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition • 271:5

MAE
Encoder

𝑚

𝑚𝑖

CH(𝑚𝑖)

𝑠 (𝑚𝑖)

Fig. 3. Mesh state embedding. The mesh part 𝑚𝑖 and its convex hull
CH(𝑚𝑖) form point cloud representations. The point clouds are normalized
and processed by I2P-MAE to yield state embeddings.

(a) equidistantly sampled cutting planes along the spatial 𝑋 -, 𝑌 -,

and 𝑍 -directions; (b) equidistantly sampled cutting planes along the

primary axes computed via PCA of each mesh part; and (c) candi-

date planes sampled from the concave edges of the mesh. Notably,

during model training we exclusively employ strategies (a) and (b),

reserving strategy (c) for supplementary candidate planes during

algorithm deployment (see Section 4.2). We emphasize that all prior

methods such as [Andrews 2024; Wei et al. 2022] can be modified

to use our extended search space, with a much larger breadth of

search. However, these methods need to perform exact plane-cutting

for each candidate plane during runtime. Therefore, using our ex-

tended search space can significantly increase their computational

overhead. In contrast, our method only requires performing multi-

ple exact plane cuts during RL training. At runtime, we primarily

rely on lightweight network inference for each candidate plane,

supplemented by very limited cutting computations, leading to a

significant runtime cost saving.

x

y

z

pc1

pc2

pc3𝑚𝑖

(b)

(a)

(c)

Fig. 4. Our potential planes for an input mesh component𝑚𝑖 include: (a)
spatial axis-align planes (red); (b) PCA axis-align planes (green); and (c)
planes sampled from concave edges (yellow). For each concave edge, three
cutting planes are sampled: one bisecting the dihedral angle and two aligned
with the edge’s adjacent faces, as referenced NavACD [Andrews 2024].

3.5 Q-Learning using Dual-state Bellman Loss
We train our policy using deep Q-learning [Mnih et al. 2015]. This

method is based on the Bellman loss that unrolls the Bellman opti-

mality condition over one decision step, which involves the state-

action values of a mesh component before and after plane-cutting.

Under our policy parameterization, however, the value after plane-

cutting involves two mesh components𝑚𝑙
𝑖 and𝑚

𝑟
𝑖 , whose values are

predicted separately via two Q-functions. We still need a method

to define the combined value function of {𝑚𝑙
𝑖 ,𝑚

𝑟
𝑖 }. To this end, we

propose our second assumption:

The state value function is additively composable over mesh

components, i.e. 𝑉 (M) = ∑
𝑚𝑖 ∈MV(𝑚𝑖) and 𝑄 (⟨𝑖, 𝑝⟩,M) =

𝑄 (𝑝,𝑚𝑖) +
∑

𝑚𝑖≠𝑚 𝑗 ∈MV(𝑚 𝑗).

Here we denoteV(𝑚𝑖) with a single parameter as the state value

function that can be readily computed by maximizing over the

discrete action space:

V(𝑚𝑖) ≜ max

𝑝∈P(𝑚𝑖)
𝑄 (𝑝,𝑚𝑖) . (7)

Under the composable assumption on the Q-function, we derive the

following dual-state Bellman loss:

E⟨M,⟨𝑖,𝑝 ⟩,M′,𝑟 ⟩∈D∥𝑟 + 𝛾𝑙V(𝑚𝑙
𝑖) + 𝛾𝑟V(𝑚𝑟

𝑖) −𝑄 (𝑝,𝑚𝑖)∥2, (8)

where the expectation is taken over a replay bufferD of transition

tuples. Note that our Bellman loss is only related to the chosen com-

ponent𝑚𝑖 instead of the entire stateM, making it computationally

efficient to evaluate. We use the standard deep soft Q-learning pro-

cedure [Haarnoja et al. 2017], with Equation 8 replacing the original

Bellman loss. Note that we introduce two different discount factors

𝛾𝑙 and 𝛾𝑟 for the two Q-functions after plane cutting. In the standard

setting, we can simply set 𝛾𝑙 = 𝛾𝑟 = 𝛾 . However, our experiments

show that using different 𝛾 for the two mesh components leads to

better training convergence speed. In practice, we set 𝛾𝑙 and 𝛾𝑟 to

be the relative convex hull volume, i.e.:

𝛾𝑙 = |CH(𝑚𝑙
𝑖) |/|CH(𝑚𝑖) |, 𝛾𝑟 = |CH(𝑚𝑟

𝑖) |/|CH(𝑚𝑖) |. (9)

Note that such design ensures the inequality 𝛾𝑙 + 𝛾𝑟 ≤ 1 holds

because the two components𝑚𝑙
𝑖 and𝑚

𝑟
𝑖 are non-overlapping after

plane cutting. The above inequality ensures Q-learning convergence

in the tabular setting, as discussed in our supplementary materials,

and serves as a strong indicator of convergence under general neural

policy representations.

4 Experiments
In this section, we detail our training and deploy steps, experimental

setup, ablation study, and evaluations.

4.1 Network Training
All experiments were conducted on a workstation equipped with

an AMD Ryzen 9 7950X3D 16-Core CPU, and an NVIDIA RTX

3090 GPU. For the Soft Q-learning implementation, we leveraged

PyTorch with a lightweight multi-layer perceptron(MLP) policy

network. The network architecture comprised four fully connected

layers with dimensions {1024, 512, 256, 128}, interleaved with ReLU

activation functions, mapping state representations to action-value

predictions through nonlinear transforms. Training employed a

1 × 10
5
-capacity experience replay buffer over 1 × 10

6
iterations.

Exploration combined initial 1 × 10
4
random steps for network

initialization, followed by 𝜖-greedy search (initial 𝜖 = 0.2, decay rate

0.99 per 1 × 103 steps). Each mesh component was sampled with

2,048 points, using reward weights 𝜆1 = 𝜆2 = 1 × 103 for objective

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:6 • Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yiqian Wu, Xiaogang Jin, and Xifeng Gao

Input CoACD NavACD Ours

F: 10.0 K 21 / 0.06 / 5.3 K / 17.4 24 / 0.05 / 4.5 K / 1.3 18 / 0.05 / 4.3 K / 4.0

F: 18.3 K 46 / 0.07 / 9.9 K / 47.3 45 / 0.06 / 8.0 K / 1.2 32 / 0.06 / 6.7 K / 1.8

F: 34.4 K 71 / 0.09 / 13.2 K / 95.1 32 / 0.08 / 7.8 K / 0.9 25 / 0.08 / 7.0 K / 4.6

Fig. 5. Comparison with CoACD [Wei et al. 2022] and NavACD [Andrews 2024]. Numbers below each result indicate the number of convex parts, Hausdorff
distance, face number, and decomposition time (𝑠). Close-up views highlight decomposition quality.

balancing. The total training time was approximately 9 hours on

the aforementioned workstation.

During training, CoACD’s concavity metric enforced geomet-

ric constraints (𝑡𝑐 = 4%) for surface-volume preservation. The ac-

tion space P(𝑚𝑖) contained 150 planes: 25 equidistant along global

𝑥/𝑦/𝑧-axes, 25 along component PCA axes, all origin-centered with

1/25 unit spacing.

4.2 Algorithm Deployment
We integrated our learning module into Unreal Engine for deploy-

ment. Following NavACD [Andrews 2024]’s framework, we adopt

their navigation space paradigm as the decomposition termination

criterion, which effectively ignores unreachable internal surfaces

while accelerating convergence. To enhance cutting plane selection

efficacy, we extend the candidate plane pool by integrating convex

edge-derived planes through NavACD’s extraction protocol, though

we deliberately exclude concave edge sampling during training due

to their representation of high-frequency geometric details that

challenge our point cloud encoder’s capture capacity.

Deployment followed three stages: (1) Policy network inference

evaluates axis-aligned planes; (2) Top 10 network-predicted planes

combine with 12 NavACD-derived convex-edge planes; (3) Physi-

cal cutting selects optimal plane by minimal convex hull volume.

Post-processing merged redundant parts using NavACD’s protocol

(implementation details in NavACD Sections 4.1-5).

4.3 Datasets
We randomly sampled 1, 500 models from the ShapeNetCore [Chang

et al. 2015] dataset, with 80% of the data designated for training. To

enhance the robustness of our mesh cutting algorithm, we prepro-

cess the data with the Watertight Manifold algorithm [Huang et al.

2018], which ensures the correct 2-manifold topology. Data augmen-

tation is incorporated during training through random rotations

applied to the input meshes. We randomly select one of the principal

axes (𝑥 , 𝑦, or 𝑧) and a rotation angle from the set (0, 𝜋/4, 𝜋/2, 𝜋). A
rotation matrix is then calculated based on these selections, relative

to the mesh’s centroid, and applied to the mesh.

4.4 Baselines
We compare our method to V-HACD [Mamou et al. 2016], CoACD

[Wei et al. 2022], and NavACD [Andrews 2024] on the test dataset.

Specifically, for CoACD and NavACD, we fine-tune their concavity

measure parameter thresholds to obtain decomposition results with

the same average Hausdorff distance, i.e. 𝐷ℎ = 0.15 and 𝐷ℎ = 0.10

of Table 1. Our method follows NavACD’s navigation space param-

eters since we also use navigation space as our stopping criterion.

For V-HACD, since it controls decomposition by manually setting

the desired number of components for each model, we compare

against V-HACD under the condition of having the same number of

components. Complete test data and statistics are in supplementary

material.

4.4.1 Comparison with CoACD and NavACD. CoACD is configured

with two precision levels for decomposition: 𝑡𝑐 = 12% and 𝑡𝑐 = 4%.

NavACD and our method use two different precision levels for the

navigable space: (1) 𝑟 = 2.5%, 𝑡 = 5% and (2) 𝑟 = 5.0%, 𝑡 = 1%.

We conducted experiments on the ShapeNet test dataset with 305

models, and the average results are shown in Table 1.

CoACD, due to its MCTS algorithm, requires extensive cutting

computations for each decision, resulting in significant time con-

sumption (see the t (𝑠) column of Table 1). NavACD’s single-step

greedy search strategy, combined with its extremely limited search

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition • 271:7

space, leads to some unnecessary cuts (see the # P column of Table

1). Our method, incorporating lightweight network inference and

limited cutting computations, effectively optimizes the cutting plane

selection process. Consequently, we achieve the desired decomposi-

tion precision with the fewest convex components (the # P column

in Table 1). Since the number of triangles in the convex hulls plays a

critical role in some applications, we also compare this metric in our

experiment, where our method achieves the lowest triangle count

(see the # F column in Table 1). More visual comparisons are shown

in Figure 5 and Figure 11.

Table 1. ShapeNet decomposition performance (format: meanmax
±std). Pa-

rameters: 𝑡𝑐=convexity threshold(%), 𝑟=navigation space’s radius(%),
𝑡=navigation spaces’s tolerance distance(%). Metrics: 𝐷ℎ=Hausdorff dis-
tance, #P=part count, #F=face count (k=×103),𝑇=computation time.

Method (Params) 𝐷ℎ ↓ #P ↓ #F (k) ↓ T (s) ↓

CoACD (𝑡𝑐12) 0.150.38±0.06 10.754±9.0 5.522.6±3.8 21.999.3±20.2

CoACD (𝑡𝑐4) 0.100.31±0.05 44.2278±45.7 10.447.7±7.2 52.3233.5±43.8

NavACD (𝑟2.5, 𝑡5) 0.150.45±0.06 6.934±5.1 2.79.0±1.6 0.31.6±0.3

NavACD (𝑟5, 𝑡1) 0.100.29±0.05 30.5184±22.3 6.722.8±3.5 1.33.7±0.6

Ours (𝑟2.5, 𝑡5) 0.150.45±0.06 6.032±4.3 2.69.4±1.6 1.37.1±1.2

Ours (𝑟5, 𝑡1) 0.100.31±0.05 25.9163±20.8 6.221.7±3.5 3.612.6±2.3

Input V-HACD Ours

F: 12.6 k 45 / 0.09 / 3.8 K / 2.2 45 / 0.06 / 9.1 K / 4.9

F: 23.1 k 11 / 0.13 / 0.5 K / 1.0 11 / 0.11 / 5.1 K / 4.8

F: 11.0 k 26 / 0.13 / 1.7 K / 1.7 26 / 0.09 / 4.8 K / 2.6

Fig. 6. Comparison with V-HACD [Mamou et al. 2016] using the same num-
ber of decomposed parts. Numbers below each result indicate the number
of convex parts, Hausdorff distance, face number, and decomposition time
(𝑠). Close-up views highlight decomposition quality.

4.4.2 Comparison with V-HACD. We compared our method with

V-HACD, ensuring an equal number of convex components for

both. The average Hausdorff distances between V-HACD results

and origin shapes at different precision levels are 0.19 and 0.14. Due

to the voxel-based preprocessing in V-HACD, its fitting accuracy

suffers significantly. Our method, in contrast, achieves superior

geometric quality in the decomposition results, as demonstrated in

Figure 6, which highlights the visual differences between the two

methods.

4.4.3 Comparison with Single-Step Greedy Algorithm. To validate

the benefits of our policy network arising from its long-term decision-

making capabilities, we compare it against a single-step greedy algo-

rithm. Within the high-precision navigable space setting, we replace

our policy module with this greedy algorithm, which is specifically

designed to select cutting planes. In the greedy approach, at each

decomposition step, all candidate planes are evaluated by simulat-

ing the cut operation, and the plane that minimizes the combined

convex hull volume is selected.

On the ShapeNet test set, the greedy algorithm yields an average

of 28.3 convex hull components, requires 13.2 seconds for decom-

position, and achieves an average Hausdorff distance of 0.10. By

contrast, our policy network achieves a significantly reduced num-

ber of 25.9 components and a decomposition time of 3.6 seconds.

While the Hausdorff distance accuracy of our method matches that

of the greedy baseline, our approach outperforms in minimizing de-

composed components and reducing computational time. This com-

parison highlights the benefits of our method’s long-term decision-

making perspective, which ultimately improves performance by

reducing the reliance on computationally expensive actual cutting

operations.

4.5 Ablation Study
In this section, we explore the effectiveness of different components

in RL-ACD. We utilize our final solution with high precision as the

baseline for ablation and report the number of decomposed parts

for comparison.

4.5.1 Candidate Plane Configurations. We first evaluated the influ-

ence of three distinct candidate plane categories—spatial axis-align

planes, PCA axis-align planes, and concave-edge planes—on convex

decomposition efficacy. As quantified in Table 2, the synergistic

integration of all three plane types yields optimal decomposition

outcomes, minimizing component count and mesh face complexity

while maintaining geometric fidelity.

Table 2. Quantitative results of the ablation study of candidate plane con-
figurations. Different types of planes are beneficial to reducing the number
of components.

Candidate Planes 𝐷ℎ ↓ # P ↓ # F (k) ↓ T (𝑠) ↓

All planes 0.10 25.9 6.2 3.6

W/O spatial axis-align planes 0.10 29.4 6.6 4.3

W/O PCA axis-align planes 0.10 27.9 6.3 4.5

W/O concave-edge planes 0.10 28.6 6.6 3.2

Number of Axis-align Planes.We systematically evaluated how se-

lecting different quantities of high-value axis-aligned cutting planes

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:8 • Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yiqian Wu, Xiaogang Jin, and Xifeng Gao

(from the RL model’s 150 predicted candidates) impacts decomposi-

tion performance during deployment (Table 3, left). We observed

that when the number of selected cutting planes is too few (e.g.,

1 or 5), the policy results might be unstable due to randomness

in network sampling. As the number of cutting computations in-

creases, the computation time significantly increases. Meanwhile,

the number of resulting parts initially decreases and then increases.

This phenomenon arises because, with an increasing number of cuts,

the algorithm progressively adopts a single-step greedy strategy,

thereby reducing the effectiveness of the long-term reward-focused

agent. Notably, when the number of calculated cuts reaches 150, the

algorithm essentially performs as a single-step greedy method. We

discovered that choosing ten planes with the highest action value

for cutting yields excellent decomposition results with the least

computational burden, achieving good model stability and global

rewards.

Table 3. Quantitative ablation study: Impact of axis-aligned planes (#AP)
and concave edges (#CE) counts. Our configuration (10 #AP + 4 #CE) bal-
ances component reduction (#P↓) and computation time (T(s)↓).

Axis-aligned Planes (#AP) Concave Edges (#CE)

#AP #P↓ T(s)↓ #CE #P↓ T(s)↓

1 29.4 2.8 0 28.6 3.2

5 27.8 3.1 2 26.4 3.5

10 25.9 3.6 4 25.9 3.6

20 25.8 4.9 8 27.1 4.4

50 26.3 7.7 16 26.5 4.9

100 26.8 12.4 32 26.3 6.0

150 28.3 13.2 64 26.1 8.4

Number of Concave Edges. Following NavACD [Andrews 2024],

we further analyzed the cost-benefit trade-off of varying the num-

ber of sampled concave edges (Table 3, right). In our method, we

observed that the average number of decomposed components does

not consistently decrease as the number of sampled concave edges

increases. This occurs because additional planes generated by sam-

pling more concave edges weaken the influence of the axis-aligned

values predicted by our policy, causing the decomposition results

to increasingly align with those of a greedy algorithm.

4.5.2 State Encoding. For the design of the state space, we evaluated
the number of components required after removing the encoded

features of convex hull sampling. The number of components re-

quired was 26.6 (vs 25.9), indicating the importance of the convex

hull feature to achieve efficient decomposition.

4.5.3 Reward Function. We evaluated the impact of various reward

weights on the experimental outcome. When the reward term 𝑟1 was

omitted, the number of components required was 27.3, and without

the reward term 𝑟2, it was 27.1. Regarding the reward weights, the

component counts were 27.0, 26.9, 25.9, 26.7, and 26.8 (vs 25.9)

for 𝜆1/𝜆2 = 0.01, 0.1, 1, 10, and 100, respectively. These results

underscore the importance of each reward term and the need to

appropriately weight them to optimize the decomposition process

and minimize the number of components.

4.5.4 Discount factors. As analyzed in Section 3.5, discount factors

𝛾𝑙 , 𝛾𝑟 govern training convergence. Figure 7 shows training loss di-

vergence when𝛾𝑙 +𝛾𝑟 > 1. Our handcrafted heuristic setup achieves

faster convergence than baselines via balanced reward distribution,

with detailed theoretical proofs in supplementary material.

Loss

Training step

1e+6

1e+4

10k 11k 12k 13k 14k 15k 16k 17k 18k

𝛾𝑙 = 𝛾𝑟 = 1

𝛾𝑙 = 𝛾𝑟 = 0.8

𝛾𝑙 = 𝛾𝑟 = 0.5

ours

Fig. 7. Analyzes training convergence dynamics under varying discount
factors (𝛾𝑙 , 𝛾𝑟). Results demonstrate that 𝛾𝑙 + 𝛾𝑟 ≤ 1 (empirically set
to relative convex hull volumes) ensures stable Q-learning convergence,
outperforming static discounting schemes.

4.6 Generalization
Our model was initially trained on the ShapeNet, which primarily

consists of man-made models (e.g., chairs, tables, and lamps). To

rigorously evaluate its cross-domain generalization capability, we

conducted zero-shot transfer tests on two unseen datasets: Human-

Body [Maron et al. 2017] and COSEG [Wang et al. 2012]. For each

target dataset, we randomly selected 20 models and applied our

pre-trained model directly without fine-tuning or retraining. As

shown in Figure 8 and Table 4, our model still achieved competitive

performance relative to previous methods. We attribute this general-

ization capability to the partially observable assumption underlying

our point cloud encoding strategy: by only requiring encoding of

a small mesh component, the network exhibits low sensitivity to

the global geometric structure of meshes, thereby enabling strong

cross-dataset performance.

F: 11.4 k 20 / 0.08 / 6.1 K / 2.9 # F: 4.2 k 46 / 0.13 / 5.1 K / 4.1

F: 31.8 k 28 / 0.09 / 12.9 K / 5.0 # F: 16.2 k 31/ 0.11 / 11.7 K / 4.9

Fig. 8. RL-ACD decomposition results on the HumanBody (left) and COSEG
(right) datasets. Our method demonstrates good generalization capability
across different categories of previously unseen data.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition • 271:9

Table 4. Quantitative results on the HumanBody and COSEG datasets,
validating RL-ACD’s generalization capability to unseen geometries.

Dataset Method 𝐷ℎ ↓ # P ↓ # F (k) ↓ T (𝑠) ↓

HumanBody

CoACD (𝑡𝑐4) 0.22 23.4 8.2 22.5

NavACD (𝑟5, 𝑡1) 0.18 22.2 8.3 1.0

Ours (𝑟5, 𝑡1) 0.17 20.2 8.1 3.7

COSEG

CoACD (𝑡𝑐4) 0.15 33.1 7.7 23.8

NavACD (𝑟5, 𝑡1) 0.13 32.8 9.0 1.1

Ours (𝑟5, 𝑡1) 0.13 29.6 8.6 4.3

We conducted extended evaluations on high-genus models with

complex topological structures to assess decomposition robustness.

As demonstrated in Figure 9, while all comparativemethods preserve

original genus characteristics under optimized parameter configu-

rations, our approach achieves superior component efficiency.

Input CoACD NavACD Ours

42 hulls 35 hulls 30 hulls

217 hulls230 hulls232 hulls

Fig. 9. Evaluates decomposition results on high-genus models with complex
topologies. RL-ACD reduces component counts by 10% compared to baseline
methods, demonstrating superior handling of intricate geometric features.

5 Conclusion and Discussion
We presented RL-ACD, a reinforcement-learning-based approach to

approximate convex decomposition. This marks the first application

of data-driven reinforcement learning techniques to tackle the well-

established ACD problem. Under our innovative assumptions, we

facilitate the use of a lightweight neural policy to approximate

near-optimal multi-step decision rewards. This enables RL-ACD to

surpass existing methodologies in terms of convex decompositions

while maintaining interactive performance suitable for real-time

applications. As a result, our approach yields more efficient ACD

results for downstream applications, significantly enhancing the 3D

asset creation workflow.

Notwithstanding its advantages, RL-ACD exhibits limitations.

The reliance on predefined candidate planes and a static feature en-

coder may constrain its ability to identify optimal cuts for complex

geometries, and suboptimal decomposition occurs when processing

smooth residual meshes lacking discriminative geometric features,

as shown in Figure 10. These failures stem primarily from the feature

extractor’s inability to encode homogeneous surfaces effectively.

Fig. 10. Illustrates a failure mode in smooth, featureless geometries. Limited
surface discriminability hinders the policy’s ability to identify optimal cuts,
highlighting opportunities for enhanced feature encoding in future work.

The identified limitations highlight promising avenues for future

research, including exploring advanced state encoding techniques

to capture complex geometries better, incorporating real-time feed-

back mechanisms to dynamically adapt the cutting strategy, and

developing methods for dynamically generating candidate planes

focused on areas of high concavity to expand the search space and

potentially identify more optimal cuts. Finally, optimizing the rein-

forcement learning training process could improve efficiency and

reduce computational requirements, ultimately enhancing the ro-

bustness and adaptability of RL-ACD for a wider range of complex

shapes and scenarios.

Acknowledgments
Xiaogang Jin was supported by the National Natural Science Foun-

dation of China (Grant Nos. 62036010, 62472373).

References
James Andrews. 2024. Navigation-driven approximate convex decomposition. In ACM

SIGGRAPH Conference Papers.
Chanderjit L Bajaj and Tamal K Dey. 1992. Convex decomposition of polyhedra and

robustness. SIAM J. Comput. 21, 2 (1992), 339–364.
Chandrajit L Bajaj and Valerio Pascucci. 1996. Splitting a complex of convex polytopes

in any dimension. In Proceedings of the Twelfth Annual Symposium on Computational
Geometry. 88–97.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. ShapeNet:

An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015).
Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2020. BSP-Net: Generating compact

meshes via binary space partitioning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 45–54.

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and

Andrea Tagliasacchi. 2020. CvxNet: Learnable convex decomposition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 31–44.

Niklas Freymuth, Philipp Dahlinger, TobiasWürth, Simon Reisch, Luise Kärger, and Ger-

hard Neumann. 2023. Swarm reinforcement learning for adaptive mesh refinement.

Advances in Neural Information Processing Systems 36 (2023), 73312–73347.
Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. 2017. Reinforcement

learning with deep energy-based policies. In Proceedings of the IEEE International
Conference on Machine Learning (ICML). 1352–1361.

John E Hershberger and Jack S Snoeyink. 1998. Erased arrangements of lines and

convex decompositions of polyhedra. Computational Geometry 9, 3 (1998), 129–143.

Jingwei Huang, Hao Su, and Leonidas Guibas. 2018. Robust watertight manifold surface

generation method for ShapeNet models. arXiv preprint arXiv:1802.01698 (2018).
Barry Joe. 1994. Tetrahedral mesh generation in polyhedral regions based on convex

polyhedron decompositions. Internat. J. Numer. Methods Engrg. 37, 4 (1994), 693–713.
Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Planning

and acting in partially observable stochastic domains. Artificial Intelligence 101, 1
(1998), 99–134.

Sinan Kockara, Tansel Halic, Kamran Iqbal, Coskun Bayrak, and Richard Rowe. 2007.

Collision detection: A survey. In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC). 4046–4051.

Jyh-Ming Lien and Nancy M Amato. 2004. Approximate convex decomposition. In

Proceedings of the Twentieth Annual Symposium on Computational Geometry. 457–
458.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:10 • Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yiqian Wu, Xiaogang Jin, and Xifeng Gao

Jyh-Ming Lien and Nancy M Amato. 2007. Approximate convex decomposition of

polyhedra. In Proceedings of the ACM Symposium on Solid and Physical Modeling.
121–131.

Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, and Dinesh Manocha. 2018. Fluid

Directed Rigid Body Control using Deep Reinforcement Learning. ACM Transactions
on Graphics (TOG) 37, 4 (2018), 1–11.

Khaled Mamou and Faouzi Ghorbel. 2009. A simple and efficient approach for 3D

mesh approximate convex decomposition. In Proceedings of the IEEE International
Conference on Image Processing (ICIP). 3501–3504.

Khaled Mamou, E Lengyel, and A Peters. 2016. Volumetric hierarchical approximate

convex decomposition. Game Engine Gems 3 (2016), 141–158.
Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,

Vladimir G Kim, and Yaron Lipman. 2017. Convolutional neural networks on surfaces

via seamless toric covers. ACM Transactions on Graphics (TOG) 36, 4 (2017), 71.
Francisco S Melo. 2001. Convergence of Q-learning: A simple proof. Institute of Systems

and Robotics, Tech. Rep (2001), 1–4.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,

et al. 2015. Human-level control through deep reinforcement learning. Nature 518,
7540 (2015), 529–533.

Joseph O’Rourke and Kenneth Supowit. 1983. Some NP-hard polygon decomposition

problems. IEEE Transactions on Information Theory 29, 2 (1983), 181–190.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel Van de Panne. 2018. Deepmimic:

Example-guided deep reinforcement learning of physics-based character skills. ACM
Transactions On Graphics (TOG) 37, 4 (2018), 1–14.

Martin L Puterman. 1990. Markov decision processes. Handbooks in Operations Research
and Management Science 2 (1990), 331–434.

Zhou Ren, Junsong Yuan, Chunyuan Li, andWenyu Liu. 2011. Minimum near-convex de-

composition for robust shape representation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV). 303–310.

Jia-Mu Sun, Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas Guibas, and Lin Gao. 2024.

Haisor: Human-aware Indoor Scene Optimization via Deep Reinforcement Learning.

ACM Trans. Graph. 43, 2, Article 15 (Jan. 2024), 17 pages. doi:10.1145/3632947
Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction.

MIT press.

Daniel Thul, Lubor Ladicky, Sohyeon Jeong, and Marc Pollefeys. 2018. Approximate

convex decomposition and transfer for animated meshes. ACM Transactions on
Graphics (TOG) 37, 6 (2018), 226.

Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and

Qiguang Miao. 2022. Deep reinforcement learning: A survey. IEEE Transactions on
Neural Networks and Learning Systems 35, 4 (2022), 5064–5078.

Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao Zhang, Daniel Cohen-Or, and

Baoquan Chen. 2012. Active co-analysis of a set of shapes. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 165.

Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. 2022. Approximate convex de-

composition for 3d meshes with collision-aware concavity and tree search. ACM
Transactions on Graphics (TOG) 41, 4 (2022), 42.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016.

Learning a probabilistic latent space of object shapes via 3d generative-adversarial

modeling. Advances in Neural Information Processing Systems (NIPS) 29 (2016),

82–90.

Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao. 2023. Learning based 2D

irregular shape packing. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1–16.
Renrui Zhang, Liuhui Wang, Yu Qiao, Peng Gao, and Hongsheng Li. 2023. Learning 3d

representations from 2d pre-trainedmodels via image-to-pointmasked autoencoders.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 21769–21780.

Hang Zhao, Zherong Pan, Yang Yu, and Kai Xu. 2023. Learning physically realizable

skills for online packing of general 3D shapes. ACM Transactions on Graphics (TOG)
42, 4 (2023), 165.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

https://doi.org/10.1145/3632947

RL-ACD: Reinforcement Learning-based Approximate Convex Decomposition • 271:11

Input V-HACD CoACD NavACD Ours

21 / 0.06 / 5.3 K / 3.128 / 0.06 / 6.0 K / 1.163 / 0.06 / 11.7 K / 46.621 / 0.07 / 1.8 K / 0.9

18 / 0.06 / 4.6 K / 1.924 / 0.06 / 5.5 K / 1.024 / 0.06 / 7.2 K / 19.818 / 0.09 / 1.2 K / 0.6

14 / 0.07 / 4.4 K / 1.817 / 0.09 / 4.5 K / 0.621 / 0.06 / 5.4 K / 19.914 / 0.11 / 0.6 K / 0.6

26 / 0.09 / 7.6 K / 2.832 / 0.10 / 8.4 K / 1.277 / 0.10 / 15.4 K / 82.126 / 0.11 / 2.3 K / 1.1

3 / 0.14 / 4.1 K / 1.05 / 0.14 / 4.6 K / 0.94 / 0.14 / 9.9 K / 18.73 / 0.15 / 0.3 K / 2.0

21 / 0.10 / 5.8 K / 5.626 / 0.12 / 6.3 K / 2.186 / 0.11 / 12.7 K / 81.921 / 0.12 / 1.4 K / 1.6

F: 18.0 K

F: 10.5 K

F: 10.8 K

F: 18.3 K

F: 11.4 K

F: 41.9 K

Fig. 11. Comparison with V-HACD [Mamou et al. 2016], CoACD [Wei et al. 2022] and NavACD [Andrews 2024]. Numbers below each result indicate the
number of convex parts, Hausdorff distance, face number, and decomposition time (𝑠). ©2025 ShapeNET.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

271:12 • Yuzhe Luo, Zherong Pan, Kui Wu, Xingyi Du, Yun Zeng, Xiangjun Tang, Yiqian Wu, Xiaogang Jin, and Xifeng Gao

Appendix

A Convergence Analysis
We analyze the convergence of our proposed dual-state Q-learning

algorithm and show that our parameter choice for the discount

factor is key to convergence. We emphasize that our analysis should

not be considered as a convergence proof. Indeed, the convergence

of deep Q-learning is very challenging due to the approximation

error of neural network. Instead, we only assume a tabular setting,

where we store and learn Q-values over all state-action pairs and

a fixed horizon, but we believe that such analysis provides useful

indications for choosing the two key parameters for the discount

factor. Specifically, we take the following assumption:

Assumption 1. Our training setup assumes:

• The dataset contains a finite number of 𝑁 meshes𝑚1,· · · ,𝑁 .
• The feature of each mesh component 𝑠 (𝑚 𝑗

𝑖
) is precomputed.

• The horizon is at most 𝐻 .

Assumption 1 exactly matches our experimental setup. We have

the following immediate result due to this setup:

Lemma A.1. Under Assumption 1, the number of possible statesM
and encoded features 𝑠 (𝑚𝑖) is finite.

Proof. We can consider 𝑠 (•) as a deterministic function due

to our assumption that 𝑠 (•) is precomputed, so we only need to

show that the number of possible statesM and components𝑚
𝑗

𝑖
is

finite. For a possible state 𝑠 (𝑚 𝑗

𝑖
) experienced during Q-learning, the

superscript 𝑗 is finite due to the assumed finiteness of dataset. The

subscript 𝑖 is also finite by induction over 𝐻 possible cut operations.

Base Step: The starting state isM = {𝑚 𝑗 }, which is finite. Inductive

Step: Assuming the number of possible statesM is finite, then a state

M′ = 𝑇 (M, ⟨𝑖, 𝑝⟩) can only be derived by cutting some𝑚𝑖 ∈ M
using one of 3 types of cutting planes: 1) axis-aligned cutting planes;

2) primary axes aligned cutting planes; 3) planes alignedwith convex

edges. The number of each type of these cutting planes is finite, so

the number of possible statesM′ is finite. □

Lemma A.1, allows us to consider a Q-learning algorithm in a

tabular setting, where we store the finite number of action values

𝑄 (𝑝,𝑚𝑖) in a table (superscript 𝑗 omitted for brevity, because the

learning problem for each mesh is separate during training in a

tabular setting). We have the following result:

Proposition A.2. Under Assumption 1 and using a tabular policy,
the Q-learning algorithm minimizing the expected dual-state Bellman
loss converges if 𝛾𝑙𝑚𝑖 ,𝑝

+ 𝛾𝑟𝑚𝑖 ,𝑝
≤ 1.

Proof. We can adopt the tabular policy due to Lemma A.1, so

the problem setup is well-defined. We adopt the argument in [Melo

2001], where the goal is to prove that Q-learning converges to a

fixed point. In our case, given the following sampled data tuple with

non-vanishing probability:

⟨M, ⟨𝑖, 𝑝⟩,M′, 𝑟 ⟩ ,

at the 𝑡 th update, our Q-learning update formula can be written as:

𝑄𝑡+1 (𝑝,𝑚𝑖) =𝑄𝑡 (𝑝,𝑚𝑖) + 𝛼𝑡 (𝑝,𝑚𝑖)[
𝑟 + 𝛾𝑙 max

𝑝𝑙 ∈P(𝑚𝑙
𝑖
)
𝑄𝑡 (𝑝𝑙 ,𝑚𝑙

𝑖)+

𝛾𝑟 max

𝑝𝑟 ∈P(𝑚𝑟
𝑖
)
𝑄𝑡 (𝑝𝑟 ,𝑚𝑟

𝑖) −𝑄𝑡 (𝑝,𝑚𝑖)
]
.

We can define our contraction operatorH as:

H𝑄𝑡 (𝑝,𝑚𝑖) = 𝑟+

𝛾𝑙 max

𝑝𝑙 ∈P(𝑚𝑙
𝑖
)
𝑄𝑡 (𝑝𝑙 ,𝑚𝑙

𝑖) + 𝛾𝑟 max

𝑝𝑟 ∈P(𝑚𝑟
𝑖
)
𝑄𝑡 (𝑝𝑟 ,𝑚𝑟

𝑖).

This operator is a contraction in the sup-norm, i.e.,

∥H𝑄𝑡 −H𝑄 ′𝑡 ∥∞ ≤ ∥𝑄𝑡 −𝑄 ′𝑡 ∥∞ .
To prove this, we write:

∥H𝑄𝑡 −H𝑄 ′𝑡 ∥∞ =max

𝑚𝑖 ,𝑝�����𝛾𝑙𝑚𝑖 ,𝑝
max

𝑝𝑙
𝑄𝑡 (𝑝𝑙 ,𝑚𝑙

𝑖) + 𝛾𝑟𝑚𝑖 ,𝑝
max

𝑝𝑟
𝑄𝑡 (𝑝𝑟 ,𝑚𝑟

𝑖)−

𝛾𝑙𝑚𝑖 ,𝑝
max

𝑝𝑙
𝑄 ′𝑡 (𝑝𝑙 ,𝑚𝑙

𝑖) − 𝛾𝑟𝑚𝑖 ,𝑝
max

𝑝𝑟
𝑄 ′𝑡 (𝑝𝑟 ,𝑚𝑟

𝑖)
�����

≤max

𝑚𝑖 ,𝑝

[
𝛾𝑙𝑚𝑖 ,𝑝

max

𝑝𝑙

�����𝑄𝑡 (𝑝𝑙 ,𝑚𝑙
𝑖) −𝑄 ′𝑡 (𝑝𝑙 ,𝑚𝑙

𝑖)
�����+

𝛾𝑟𝑚𝑖 ,𝑝
max

𝑝𝑟

�����𝑄𝑡 (𝑝𝑟 ,𝑚𝑟
𝑖) −𝑄 ′𝑡 (𝑝𝑟 ,𝑚𝑟

𝑖)
�����
]

≤max

𝑚𝑖 ,𝑝

[
(𝛾𝑙𝑚𝑖 ,𝑝

+ 𝛾𝑟𝑚𝑖 ,𝑝
)max

𝑚𝑖 ,𝑝

�����𝑄𝑡 (𝑝,𝑚𝑖) −𝑄 ′𝑡 (𝑝,𝑚𝑖)
�����
]

≤max

𝑚𝑖 ,𝑝

[
(𝛾𝑙𝑚𝑖 ,𝑝

+ 𝛾𝑟𝑚𝑖 ,𝑝
)
]
max

𝑚𝑖 ,𝑝

�����𝑄𝑡 (𝑝,𝑚𝑖) −𝑄 ′𝑡 (𝑝,𝑚𝑖)
�����

=max

𝑚𝑖 ,𝑝
(𝛾𝑙𝑚𝑖 ,𝑝

+ 𝛾𝑟𝑚𝑖 ,𝑝
)∥𝑄𝑡 −𝑄 ′𝑡 ∥∞ ≤ ∥𝑄𝑡 −𝑄 ′𝑡 ∥∞ .

Here we introduce subscript for 𝛾
𝑙,𝑟
𝑚𝑖 ,𝑝

to indicate that their choices

are dependent on our state and action, but we always have 𝛾𝑙𝑚𝑖 ,𝑝
+

𝛾𝑟𝑚𝑖 ,𝑝
≤ 1 by our construction. We also omit 𝑝 ∈ P(𝑚𝑖) and 𝑝𝑙,𝑟 ∈

P(𝑚𝑙,𝑟
𝑖
) for brevity. By the Banach fixed point theorem, there exists

a unique fixed point 𝑄★
withH𝑄★ =𝑄★

. The remaining argument

towards convergence follows from Theorem 2 of [Melo 2001]. □

Note that this is not the optimal Q-table by our assumption, which

suffices since we only aim to prove convergence.

ACM Trans. Graph., Vol. 44, No. 6, Article 271. Publication date: December 2025.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 MDP Reformulation of ACD
	3.2 Partially Observable Assumption
	3.3 Policy Parameterization
	3.4 Action Space Discretization
	3.5 Q-Learning using Dual-state Bellman Loss

	4 Experiments
	4.1 Network Training
	4.2 Algorithm Deployment
	4.3 Datasets
	4.4 Baselines
	4.5 Ablation Study
	4.6 Generalization

	5 Conclusion and Discussion
	Acknowledgments
	References
	A Convergence Analysis

