
LegoACE: Autoregressive Construction Engine for Expressive LEGO®

Assemblies
HAO XU, State Key Lab of CAD&CG, Zhejiang University, China
YUQING ZHANG, State Key Lab of CAD&CG, Zhejiang University, China
YIQIAN WU, State Key Lab of CAD&CG, Zhejiang University, China
XINYANG ZHENG, Tsinghua University, China
YUTAO LIU, VAST, China
XIANGJUN TANG, KAUST, Saudi Arabia
YUNHAN YANG, University of Hong Kong, China
DING LIANG, VAST, China
YINGTIAN LIU, Tsinghua University, China
YUANCHEN GUO, VAST, China
YANPEI CAO∗, VAST, China
XIAOGANG JIN∗, State Key Lab of CAD&CG, Zhejiang University, China

Fig. 1. Our LegoACE generates diverse and expressive LEGO models with robust brick connectivity (left). To demonstrate real-world applicability, on the right
we present our sequentially generated outputs (first and third rows) with their corresponding physical LEGO assemblies (second and fourth rows), which
faithfully follow LegoACE ’s sequential generation procedure and exhibit stable structural integrity in both cases.

Automated LEGO design is challenging due to the extensive variety of LEGO
brick types and the necessity of constructing semantically meaningful mod-
els from individually meaningless components. Current automatic LEGO
generation methods face two key challenges: i) They typically rely on ex-
plicit modeling of brick connectivity to ensure structural validity. However,

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2137-3/2025/12
https://doi.org/10.1145/3757377.3763881

this requires extensive manual annotation, which is labor-intensive as the
variety of LEGO primitives increases. This limits training data diversity,
restricting the variety of LEGO bricks that can be effectively utilized. ii) To
facilitate learning within neural networks, current methods often employ
either volume or text-based descriptions to represent LEGO models. How-
ever, volumetric representations are computationally expensive and hamper
large-scale generative training, while text-based approaches rely on large
language models and dedicated text-to-brick mapping rules, introducing a
semantic gap between language tokens and 3D brick structures.

To address these challenges, we propose LegoACE, an autoregressive con-
struction engine for expressive LEGO assembly generation conditioned on
text prompts or multi-view normal maps. By leveraging the sequential nature
of LEGO assemblies, LegoACE implicitly learns connection relationships by
modeling the conditional distribution of each brick’s position, orientation,
and type based on previously placed bricks. This formulation enables us
to construct a large-scale dataset, LegoVerse, which comprises over 55,000

1

https://doi.org/10.1145/3757377.3763881

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong Xu et al.

unique models with 9,314 different brick types. To precisely represent LEGO
primitives while minimizing computational overhead, we propose a tok-
enization strategy, LEGO Native Tokenization Algorithm, which transforms
unstructured bricks into compact tokens encoding position, rotation, and
type. This enables a decoder-only transformer to autoregressively generate
LEGO models based on conditional inputs. Furthermore, to enhance model
performance, we apply Direct Preference Optimization (DPO) to fine-tune
LegoACE. Our experimental results show that LegoACE demonstrates the
ability to generate diverse and expressive LEGO assemblies with robust brick
connectivity, significantly advancing the state-of-the-art in LEGO model
generation.

CCS Concepts: • Applied computing→ Computer-aided manufactur-
ing.

Additional Key Words and Phrases: 3D Generation, LEGO, Auto-regressive
Generation

ACM Reference Format:
Hao Xu, Yuqing Zhang, Yiqian Wu, Xinyang Zheng, Yutao Liu, Xiangjun
Tang, Yunhan Yang, Ding Liang, Yingtian Liu, Yuanchen Guo, Yanpei Cao,
and Xiaogang Jin. 2025. LegoACE: Autoregressive Construction Engine for
Expressive LEGO® Assemblies. In SIGGRAPH Asia 2025 Conference Papers
(SA Conference Papers ’25), December 15–18, 2025, Hong Kong, Hong Kong.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3757377.3763881

1 INTRODUCTION
Creating semantically meaningful LEGO models from basic primi-
tives typically requires following official building instructions, which
are time-consuming to design and restrict flexibility and creativ-
ity. Therefore, automating the construction of a LEGO model is a
challenging yet meaningful task.
However, existing LEGO model generation methods rely on ex-

plicitly modeling the connection relationships between LEGO bricks,
requiring annotating each LEGO primitive to specify the exact lo-
cations of its connection units (studs and tubes). As the variety of
LEGO primitives increases, the annotation process becomes increas-
ingly labor-intensive, posing a significant barrier to scaling such
methods to large datasets. Consequently, recent methods are trained
on a relatively small dataset [Ge et al. 2024a] (∼ 400) or encompass
only a limited set of brick types [Chung et al. 2021; Ge et al. 2024a;
Pun et al. 2025] (<30), thereby restricting their diversity, expressive-
ness, and generalizability. Moreover, unlike text or images, LEGO
models lack an inherently structured representation that can be pro-
cessed by neural networks. While volumetric representations [Ge
et al. 2024a] have been proposed to be modeled using generative
methods such as 3D diffusion models, their high computational
demands significantly hinder the training of large-scale models.
Additionally, designing algorithms that reliably convert volumes
back into LEGO bricks while preserving connectivity remains a
significant challenge. Concurrent with our work, BrickGPT [Pun
et al. 2025] explores representing LEGO models using natural lan-
guage, but its reliance on dedicated text-to-brick mapping rules and
the semantic gap between language tokens and 3D brick structures
limits output diversity and fidelity.

In this paper, we propose LegoACE, a novel autoregressive pipeline
for generating expressive LEGOmodels conditioned on text prompts
or multi-view normal maps. Inspired by the serialized nature of

LEGO assemblies, we propose to implicitly learn the connection re-
lationships by modeling the conditional distribution of each brick’s
position, orientation, and type, conditioned on the bricks that have
already been placed. By eliminating the need for exhaustive man-
ual annotations, this implicit formulation enables the creation of
a large-scale LEGO dataset, LegoVerse, comprising 55,000 unique
models and 9,314 brick types, which far surpasses existing collec-
tions and supports complex axis-aligned rotational transformations
(Tab. 1). To obtain an efficient representation that can be effectively
processed by the neural networks, we introduce a novel LEGO Na-
tive Tokenization Algorithm. It discretizes each brick’s position and
rotation into compact tokens, explicitly encoding spatial transforma-
tions while preserving representation compactness. We propose that
focusing on the inter-brick relationships can achieve a similar effect
to explicitly using geometric information, while offering higher
efficiency. Consequently, we encode only brick-type information in-
stead of the full geometry, significantly reducing computational cost
while preserving robust assembly quality. We train a decoder-only
transformer to autoregressively generate LEGO models, facilitat-
ing implicit modeling of LEGO connections and offering greater
control over the generation process. We support two conditioning
modalities, text prompts and multi-view normal maps, which are
encoded using CLIP [Radford et al. 2021] and DINOv2 [Oquab et al.
2024], respectively. Finally, to ensure that the generated models
align more closely with human preferences, we incorporate Direct
Preference Optimization (DPO) [Rafailov et al. 2023] to fine-tune
the trained LegoACE. Our approach achieves high-quality genera-
tion of diverse and semantically meaningful LEGO structures with
robust brick connectivity. Our code and models can be found at
https://xh38.github.io/LegoACE/.

Our contribution can be summarized as follows:
• We propose a novel autoregressive pipeline, LegoACE, for gener-
ating diverse and visually rich LEGO models using a wide variety
of LEGO bricks, significantly improving diversity and realism
compared to previous approaches.

• We introduce a novel LEGO Native Tokenization Algorithm that
converts unstructured LEGO models into compact tokens, en-
abling the autoregressive pipeline to effectively process and gen-
erate LEGO structures based on various input conditions..

• We construct a LEGO dataset, LegoVerse, comprising over 55,000
unique models and 9,314 brick types, addressing the scarcity of
publicly available LEGO data.

2 RELATED WORK

2.1 LEGO Generation
The automatic construction of LEGOmodels has been a long-standing
challenge since the LEGO Group first introduced the problem. Op-
timization based LEGO generation considers constructing LEGO
models as a combinatorial optimization problem [Gower et al. 1998;
Liu et al. 2024b; Luo et al. 2015; Petrovic 2001], while search-based
methods explore the solution space to find an appropriate solu-
tion [Stephenson 2016; Winkler 2005]. Flexible inputs, such as im-
ages or 3D models, are also supported through iterative refinement
and deformation, which align the generated LEGO models with the
input data [Xu et al. 2019; Zhou et al. 2019, 2023]. To address the

2

https://doi.org/10.1145/3757377.3763881
https://xh38.github.io/LegoACE/

LegoACE: Autoregressive Construction Engine for Expressive LEGO® Assemblies SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong

irregularity of LEGO models, prior work [Lee et al. 2018; Testuz
et al. 2013] voxelizes the models to simplify processing and then
reconstructs the LEGO structure from the voxel representation.
From a machine learning perspective, LEGO models should be

transformed into representations that learning algorithms can effec-
tively interpret and process. The inter-brick relationships could be
formulated as a graph [Ma et al. 2023; Thompson et al. 2020], which
can be generated by generative graph models. Others [Liu et al.
2024a] treat the LEGO model construction as an action sequence
and use reinforcement learning to fit the generation process. There
are also retrieval-based generation methods for the production of
LEGO models [Ge et al. 2024b]. By representing LEGO models with
3D volumes, VAE or diffusion models can learn the distribution of
LEGO structures in the volumetric space [Ge et al. 2024a; Lennon
et al. 2021], but the high computational demands hinder large-scale
training. To achieve a more compact representation, BrickGPT [Pun
et al. 2025] uses LLM to describe LEGO models in natural language.
But this approach requires dedicated text-to-brick mapping rules
and suffers from a semantic gap between language and 3D struc-
tures.
The aforementioned methods all rely on explicit annotation of

brick connectivity, imposing a labor-intensive burden that restricts
the scale and diversity of LEGO datasets. In contrast, we implicitly
learn the connection relationships using an autoregressive frame-
work, thereby eliminating the need for connectivity annotations. As
a result, we can consider a much broader range of brick types and
generate more diverse models than ever before. Furthermore, our
novel LEGO Native Tokenization Algorithm is able to effectively
represent LEGO bricks while significantly reducing computational
overhead.

2.2 Auto-Regressive 3D Generation
Neural networks, particularly convolutional ones, are optimized for
grid-like data but struggle to handle unstructured mesh data. Re-
cently, many approaches have attempted to generate meshes directly
in an auto-regressive manner to address this challenge. Since a mesh
is composed of vertices and faces, which carry different semantic
meanings, prior work uses two separate transformers to indepen-
dently learn their respective distributions [Nash et al. 2020]. To sim-
plify this process with a single transformer, a neural representation
of coordinates is proposed [Chen et al. 2024a]. MeshGPT [Siddiqui
et al. 2024] reduces sequence length by tokenizing the mesh repre-
sentation and learning mesh tokens with a GPT-like transformer.
Subsequent methods have explored various directions, including
conditioning strategies to control the generation process [Chen
et al. 2025, 2024b; Tang et al. 2025; Zhao et al. 2025b], more efficient
tokenization techniques to scale up the number of generated mesh
faces [Weng et al. 2024b], functionality-specific designs [Gao et al.
2024], and coarse-to-fine generation approaches [Weng et al. 2024a].

Similar to meshes, LEGO models also possess irregular structures.
However, the aforementioned methods cannot be directly applied
to the LEGO model due to its unique challenges, such as discrete
axis-aligned rotations and a diverse set of brick types.

40 - 80

80 - 120

200 - 400

> 400

20 - 40

Number of bricks per model

Fr
eq

ue
nc

y

38.1%

34.6%

17.8%

9.5%
Occurrence > 1000

Occurrence 1-10

Occurrence 101-1000

Occurrence 11-100

Fig. 2. LegoVerse Dataset.We present the distribution of brick occurrence
frequencies (top) and the distribution of models by brick count (bottom),
demonstrating the richness and diversity of our LegoVerse dataset.

Table 1. Comparison of LEGO model datasets. Our dataset comprises
the largest collection of models and brick types and supports complex
rotation transformation.

Dataset # of models # of bricks # of rotation types

RAD-1k [2021] 1,000 2 2
LEGO micro-building [2024a] 400 28 20

StableText2Lego [2025] 47,000 8 2
LegoVerse (Ours) 55,000 9,314 48

3 METHOD
The overview of our pipeline is illustrated in Fig. 3.We first construct
a large-scale LegoVerse dataset and a corresponding LEGO brick
library (Sec. 3.1). Then we introduce an efficient tokenization algo-
rithm that automatically encodes LEGO bricks into discrete tokens
which could be processed by neural network (Sec. 3.2). Building on
this representation, we present LegoACE, an autoregressive model
that generates physically plausible LEGO structures conditioned on
either text prompt or multi-view normal images (Sec. 3.3).

3.1 LegoVerse Dataset
Unlike mesh generation models, which benefit from a wealth of
available datasets, the lack of datasets remains a major challenge
in LEGO generation models training. As shown in Table 1, the
LEGO micro-building dataset [Ge et al. 2024a] comprises only 400
models built from 28 brick types, focuses solely on miniature ar-
chitectural structures, and only supports 20 axis-aligned rotations.
BrickGPT [Pun et al. 2025] introduces a significantly larger dataset,
StableText2Lego, with over 40,000 models. However, it uses only
8 types of basic bricks and includes only upward-facing rotations,
limiting the diversity of geometric configurations.

3

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong Xu et al.

DINOv2

Vocabulary

Position

Rotation

Brick Type

“A compact LEGO off-road car
with four wheels, detailed front
grill, and open roof structure”

Geometry Embeddings

Text Embeddings

Decoder-only Transformer

Input previous token sequence

Predict current token

Geometric Features

or

BOS EOS

BOS
CLIP

projection

EOS

Cross-Entropy Loss
gt

res

z
x

y

BOS

BOS

Bricks already generated

Current predicted brick

Bricks not yet generated(b) LegoACE Pipeline

(a) LEGO Tokenization (c) Direct Preference Optimization (DPO)

Reference Model

Policy Model

Condition
Preference Pairs

Text Prompt Input

Multi-view Normal Input

projection

Fig. 3. Overview of our pipeline. (a) We begin by tokenizing the LEGO model into a sequence of tokens. For a single LEGO brick, we convert its position,
rotation, and type attributes into tokens within a unified vocabulary. The full LEGO model is tokenized by processing each brick individually, following a
predefined 𝑧-𝑥-𝑦 spatial ordering. (b) LegoACE supports two types of conditional inputs. Geometry embeddings are derived from multi-view normal maps
via DINOv2, while text embeddings are obtained using CLIP. These embeddings are prepended to the token sequence to provide conditional guidance. A
decoder-only Transformer then autoregressively generates the token sequence, proceeding token by token. For each brick, the tokens are generated in the
order of position, rotation, and brick type. In the figure, the currently predicted token is highlighted with a shaded background. Once the entire sequence is
generated, the condition embeddings are discarded, and the remaining tokens are detokenized into the final LEGO model. (c) To further fine-tune the trained
LegoACE conditioned on normal maps, we apply DPO and construct a preference dataset. We duplicate the trained LegoACE into a frozen reference model and
a learnable policy model. The preference pairs are then utilized to optimize the policy model, with regularization achieved through the frozen reference model.

To address the lack of a comprehensive dataset, we collect a new
dataset, LegoVerse, comprising about 55,000 models, spanning di-
verse LEGO categories, including buildings, vehicles, characters,
spaceships, animals, furniture, and more. As shown in Fig. 2, we
summarize key statistics for LegoVerse, illustrating the distribution
of brick occurrence frequencies and the distribution of models by
brick count. We also showcase representative brick types and ex-
ample models from our dataset. Furthermore, the distribution of
brick counts per model reveals a wide range of structural complexity,
from simple builds with a few dozen bricks to intricate constructions
composed of over thousands of bricks.

Our dataset comprises 9,314 unique brick types, encompassing a
broad range of axis-aligned orientations. In addition to frequently
used bricks, our LegoVerse dataset includes a variety of specialized
LEGO components such as wheels, steering wheels, doors, and
windows, highlighting its richness and diversity. For all brick types
utilized across the models in our dataset, we construct a brick library
𝒯 for subsequent use in in Sec. 3.2. Further details on the brick
library’s construction can be found in Sec. B of our supplementary
file.

3.2 LEGO Native Tokenization
Compared to other 3D representations like meshes or volumes,
LEGO models are composed of discrete bricks drawn from a prede-
fined library and assembled under connectivity constraints. Bricks

cannot be abstracted as points or cubes, as such representations fail
to capture their full characteristics. A complete description requires
not only the position of each brick, but also its orientations and
geometric properties. To effectively tokenize LEGO models while
preserving their natural structure, as shown in Fig. 3 (a), we pro-
pose a novel non-learning LEGO Native Tokenization method that
explicitly represents each brick’s attributes.
LEGO models are tokenized on a per-brick basis. Each brick’s

position, rotation, and brick type are encoded into a token set as:

𝜇 = [P,R,T], (1)

where P, R, and T represent tokens for position, rotation, and brick
type, respectively. The tokens of all LEGO models in our LegoVerse
dataset are concatenated to form a unified vocabulary:

V = VP ∪VR ∪VT , (2)

whereVP ,VR andVT denote the vocabularies of position, rotation,
and brick type tokens, respectively.
In the following sections, we detail the computation of position,

rotation, and brick type tokens, along with the tokenization order
in a LEGO model.

Position tokens. We define the position of a brick as a relative
translation in world coordinates, represented by p = [𝑥,𝑦, 𝑧]𝑇 , ap-
plied to its original position in the brick library 𝒯. Developing
an effective tokenization scheme for these continuous positions

4

LegoACE: Autoregressive Construction Engine for Expressive LEGO® Assemblies SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong

Generate along z-axis G
en

er
at

e
al

on
g

y-
ax

is

z

x
y

Fig. 4. The tokenization order. LEGO models are tokenized following the
𝑧-𝑥-𝑦 order: first along the 𝑧-axis (dark green to light green), then along
the 𝑥-axis (dark yellow to light yellow), and finally along the 𝑦-axis (dark
blue to light blue).

requires careful consideration of both geometric precision and com-
putational efficiency. While the original relative translation provides
precise spatial information, its unbounded nature creates challenges
for discrete token representation, including infinite theoretical vo-
cabulary size and lack of translation invariance.

We introduce a relative linear encoding scheme to overcome these
limitations. First, we establish a local coordinate system by comput-
ing the minimum bounding box corner p𝑚𝑖𝑛 = [𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛]𝑇
over all bricks in the model that we are processing. Then, we per-
form precision-preserving quantization by converting positions to
the position token P (represented as integer LDU1 offsets) through:

P = ⌊p − p𝑚𝑖𝑛⌉ =
[
⌊𝑥 − 𝑥𝑚𝑖𝑛⌉, ⌊𝑦 − 𝑦𝑚𝑖𝑛⌉, ⌊ 𝑧 − 𝑧𝑚𝑖𝑛⌉

]
, (3)

where ⌊·⌉ denotes rounding to the nearest integer LDU value.

Rotation tokens. Representing brick orientations presents unique
challenges due to the continuous nature of 3D rotations. Given that
LEGO bricks predominantly feature axis-aligned orientations in the
LEGO models, the nine-dimensional parameterization of rotation
matrices 𝑟 ∈ R3×3 is both redundant and incompatible with discrete
token representations.
To address this, we construct a restricted axis-aligned rotation

setVR , containing only 𝑁rot = 48 canonical orientations (including
mirrored cases) that cover all axis-aligned permutations of LEGO
bricks. For non-axis-aligned rotations encountered in raw data, we
project them to the closest valid orientation inVR via:

R = argmin
R𝑖 ∈VR

������r −M−1
rot (R𝑖)

������
𝐹
, (4)

where | | · | |𝐹 is the Frobenius Norm measuring the distance between
rotation matrices, and Mrot is a predefined mapping from the rota-
tion matrix 𝑟𝑖 to rotation token 𝑅𝑖 . We leverage the indices of the
closest match as our rotation tokens R.

Brick type tokens. We assign a brick type identifier T ∈ N
for each brick in the brick library𝒯. This enables a deterministic
mapping from each brick in the LEGO model to a corresponding
discrete brick type token T . This abstraction discards redundant
geometric details that drive up computational cost, instead focusing
on relationships among brick types, which are governed by specific
connectivity rules. As shown in Sec. 4, this simplified formulation
is effective for generating stable LEGO models and greatly reduces
computational overhead.

1The LDraw Unit (LDU) is the unit of measurement used in the LDraw format, which
is introduced in detail in Sec. A of the supplementary material

Tokenization Order. For the sequence order of the entire LEGO
model, we adopt the 𝑧-𝑥-𝑦 ordering, as shown in Fig. 4. The under-
lying model is generated sequentially from bottom to top, with each
LEGO brick being placed one by one. By learning this sequential
distribution, we achieve implicit learning of the inter-brick relation-
ships between LEGO bricks.

3.3 LegoACE
3.3.1 Model Architecture. We convert the LEGOmodels into tokens,
which can be learned by the auto-regressive generation model, as
shown in Fig. 3 (b). Then we adopt the GPT-like Transformer archi-
tecture LLaMA [Touvron et al. 2023a,b] as our backbone. To condi-
tion token sequence generation on condition information, we assign
the condition embeddings at the beginning of the sequence, followed
by the special BOS token, which marks the beginning of the token
sequence. In this paper, we focus on conditional generation tasks
based on two types of input: textual descriptions and multi-view
normal maps. For textual descriptions, we utilize CLIP [Radford et al.
2021] to encode the input into rich semantic feature representations.
For the multi-view normal maps, we leverage DINOv2 [Oquab et al.
2024] to extract geometric features that capture both fine-grained
details and high-level semantics. The resulting conditional features
from both modalities are subsequently projected into the model’s
embedding space through a learnable linear layer.

We sample the next token from the predicted probability distribu-
tion of the next token based on the previous token sequence and the
condition embeddings, which implicitly includes the connectivity
between bricks:

𝑝 (𝜇𝑡 |𝑐, 𝜇0, ..., 𝜇𝑡−1) = 𝐺 (𝑐, {𝜇0, 𝜇1, ..., 𝜇𝑡−1}) , (5)

where 𝜇𝑘 denotes the 𝑘-th token in the sequence, 𝑐 represents the
condition embedding, and 𝐺 denotes our LegoACE.

3.3.2 Model Training and Inference. We process LEGO models in
the LegoVerse dataset (Sec. 3.1) by tokenizing their bricks based
on the predefined order (Sec. 3.2). For multi-view normal map con-
ditioning, we render normal maps from the ground-truth LEGO
models to serve as conditional input during training. Leveraging
the ability to render normal maps from any subset of bricks and
inspired by the serialized nature of LEGO models, we propose a data
augmentation method for multi-view normal map conditioning. For
each LEGO model, we randomly extract a subsequence based on
the predefined order and render the corresponding normal maps for
that partial structure. For text descriptions, we obtain prompts using
Gemini-2-Flash [Google 2024] to generate captions from rendered
RGB images of LEGO models. Since meaningful prompts cannot
be reliably extracted from incomplete models, the text-conditioned
version of LegoACE is trained only on complete text–model pairs
without data augmentation.

Our unified token vocabulary includes different attributes of
LEGO bricks. To ensure valid LEGO model generation, during the
inference process, we selectively enable only the relevant subset
of vocabulary. For example, when generating position tokens, we
only consider the position-related part of the vocabulary, while the
rotation and type parts are masked out. The EOS token, which marks

5

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong Xu et al.

(a) Conditioned on multi-view normal maps (b) Conditioned on text descriptions

“Table featuring a flat rectangular
surface over four evenly spaced legs”

“Compact chair with a tall
backrest and serrated seat”

“Compact building structure
with rooftop”

“Tall LEGO tower with a square
base, modular stacked floors,

decorative windows, and tapered
spire top”

“Assembled robot figure with two
segmented legs, a compact upper body”

“Spaceship model featuring a
central body and large angled

wings”

“Assembly representing a van or
bus with circular wheels” “Compact model of an airplane” “A constructed model depicting

a rectangular bed assembly with
a layered structure”

“Train with rectangular body
and geometric components”

“vessel featuring an elongated central hull” “Double unit featuring
rectangular bookshelf segments”

Fig. 5. Our generated results based on (a) multi-view normal maps, and (b) text descriptions.

the end of the sequence, is only unmasked after the full set of tokens
representing a LEGO brick has been generated.

3.3.3 Post-training with DPO. After training, LegoACE is capable
of generating diverse LEGO models. While conditioning LegoACE
on normal maps generally yields plausible results, the outputs occa-
sionally diverge from the input normals due to the diverse range
of LEGO brick types and the inherent complexity of their combi-
nations. To further enhance the quality and alignment of models
generated from multi-view normal maps, we subsequently apply
DPO[Rafailov et al. 2023] to fine-tune the trained LegoACE model,
as shown in Fig. 3 (c).

DPO aligns a fine-tuned model with human preferences while pre-
venting from deviating too far from the original network, achieved
by comparing preferred and dispreferred samples using two copies
of the original model: a frozen reference model and a trainable policy
model. The loss is computed as follows:

L𝐷𝑃𝑂

(
𝜋𝜃 |𝜋𝑟𝑒 𝑓

)
=

− E(𝑐,𝑙+,𝑙−)∼D

[
log𝜎

(
𝛽 log

𝜋𝜃 (𝑙+ |𝑐)
𝜋𝑟𝑒 𝑓 (𝑙+ |𝑐)

− 𝛽 log
𝜋𝜃 (𝑙− |𝑐)
𝜋𝑟𝑒 𝑓 (𝑙− |𝑐)

)]
,

(6)

where 𝛽 is the coefficient that balances preferred and dispreferred
terms, 𝑐 is the input condition. 𝑙+ and 𝑙− are positive and negative

labels, D refers to the dataset consisting of data pairs of condition,
positive output, and negative output{𝑐, 𝑙+, 𝑙−}.
Since multi-view normal maps provide strong geometric priors,

generated results that more closely resemble the ground truth are
considered more aligned with user preferences. To capture this, we
use Chamfer Distance as the similarity metric to construct prefer-
ence pairs. Given the input images, we generate two LEGO models
and form two image-model pairs. If one model exhibits a signifi-
cantly smaller Chamfer Distance to the ground truth than the other,
it is considered to have a substantial advantage in geometric fidelity.
We then assign a positive label to the LEGO model with the lower
Chamfer Distance. Based on this preference rule, we construct a
preference dataset required for DPO training.

4 EXPERIMENTS

4.1 Implementation Details
For the text encoder CLIP and the image encoder DINOv2 used
to encode conditional inputs, we use the implementation from the
transformers library [Wolf et al. 2020]. The vocabulary includes
1,280 position tokens, 48 rotation tokens (24 axis-aligned rotations
and their reflections), and 9,314 type tokens, along with 2 special
tokens BOS and EOS. Our model contains 243M parameters.

6

LegoACE: Autoregressive Construction Engine for Expressive LEGO® Assemblies SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong

[Ge et al. 2024a]Ours

Fig. 6. Unconditional qualitative comparison. We compare our method with the unconditional baseline [Ge et al. 2024a], with both models trained on the
LEGO Micro Building dataset. [Ge et al. 2024a] exhibits issues such as intersections (highlighted with orange boxes and zoomed-in views), asymmetrical and
semantically implausible structures (highlighted with green boxes), as well as disconnected components that make the generated models invalid (highlighted
with blue boxes). In contrast, our method consistently produces LEGO structures with plausible geometry and robust connectivity.

Table 2. Unconditional quantitative comparison. We evaluate our
method and the baseline [Ge et al. 2024a] using multiple metrics, includ-
ing distance to the ground truth (1-NNA, MMD), runtime, and connection
rate. Our method not only achieves consistently better numerical results
across all metrics but also requires significantly less training time. This
demonstrates the high efficiency and strong representational capacity of
our serialized representation.

Method MMD ↓ 1-NNA ∼50% COV ↑ Runtime ↓ Connected
CD EMD CD EMD CD EMD Train Test Rate ↑

Ge et al. 11.57 2.28 65.22% 65.68% 12.54 1.66 20 h 3 min 53%
Ours 3.52 0.15 56.63% 52.00% 9.55 1.23 10 min 3 sec 82%

The pre-training of multi-view normal map conditioned LegoACE
is conducted on 8 A100 GPUs for two days. We randomly selected
50,000 models as the training set and used the remaining 5,000 mod-
els for validation. The learning rate follows a cosine decay, starting
from 1e-4 and decaying to 1e-5. For post-training with DPO, we
create 5,000 data pairs. The DPO training process takes 15 minutes
on 8 A100 GPUs for 3 epochs. The text-conditioned LegoACE is also
trained on 8 A100 GPUs for two days, using 54,000 models as the
training set and the remaining 1,000 models for validation. During
inference, we use both top-𝑘 (𝑘 = 10) [Fan et al. 2018] and top-𝑝
(𝑝 = 0.95) [Holtzman et al. 2020] sampling in conjunction with our
dynamic masking strategy.

4.2 Results
Fig. 5 presents LEGO assemblies generated by LegoACE conditioned
on multi-view normal input (Fig. 5 (a)) and text input (Fig. 5 (b)).
These examples demonstrate our model’s capacity to produce di-
verse and semantically aligned designs, ranging from simple char-
acters and animals to intricate vehicles and robotic structures. This

expressive power across both conditioning modalities stems from
our extensive dataset and novel tokenization strategy.

4.3 Comparison
We compare our method with an unconditional LEGO generation
baseline [Ge et al. 2024a]. To ensure a fair comparison, we train
an unconditional version of LegoACE on their open-source dataset,
LEGO micro-building. Note that while [Ge et al. 2024a] leverages
explicit connection information in the training dataset, our method
processes the same dataset using our own tokenization approach,
without relying on any explicit connectivity annotations. The train-
ing details are discussed in Sec. C of the supplementary file.
We also evaluate LegoACE against both text-conditioned and

image-conditioned baselines. For text conditioning, we compare
with the text-to-LEGOmodel BrickGPT [Pun et al. 2025] and general
text-to-3D methods Hunyuan3D 2.5 [Zhao et al. 2025a], Shap-E [Jun
and Nichol 2023] and TRELLIS [Xiang et al. 2024]. For image con-
ditioning, since no LEGO-specific image-to-3D methods exist, we
compare with general image-to-3D models such as SPAR3D [Huang
et al. 2025], TripoSG [Li et al. 2025], and Hi3DGen [Ye et al. 2025].
Finally, to enable a fair comparison, for methods that cannot gener-
ate LEGO models, we apply a legolization process2 to convert the
generated general meshes into LEGO-compatible models.

Qualitative Comparison. As shown in Fig. 6, the baseline uncondi-
tional method [Ge et al. 2024a], despite being trained with explicitly
annotated connection relationships in volumetric representations,
exhibits intersections, asymmetrical and semantically implausible

2https://www.cgtrader.com/free-3d-models/scripts-plugins/modelling/legoit-blender-
addon-lego

7

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong Xu et al.

“Small car featuring
a rectangular body,

flat top, and
stepped edges”

Ours Hunyuan3D 2.5 Shap-EBrickGPT

“Compact model
of an airplane”

“Train with
rectangular body
and geometric
components”

TRELLIS

Fig. 7. Text-conditional qualitative comparison. We compare our method with the text-to-LEGO method BrickGPT [Pun et al. 2025], general text-to-3D
methods Hunyuan3D 2.5 [Zhao et al. 2025a], Shap-E [Jun and Nichol 2023] and TRELLIS[Xiang et al. 2024], all of which share the same text input. For these
general-purpose models, we convert the generated meshes (shown in the top-left corners and highlighted with green boxes) into LEGO-compatible models for
fair comparison. It should be noted that the airplane out-of-distribution of BrickGPT.

structures, as well as brick disconnectivity that makes the generated
models invalid. In contrast, our LegoACE consistently generates
LEGO models with robust brick connectivity.

This suggests that by serializing LEGOmodels, the autoregressive
model effectively learn brick connection relationships in an implicit
manner.
For text conditioning, as shown in Fig. 7, all methods use the

identical text prompts sampled from the StableText2Lego [Pun et al.
2025] dataset and the validation set of our LegoVerse. BrickGPT,
which shares a similar objective with our work, can generate LEGO
models only with basic brick types. This limitation results in a
loss of detail. For example, car wheels are represented using ba-
sic rectangular bricks, whereas our LegoACE successfully utilizes
actual LEGO wheel components. This improvement is enabled by
our curated LegoVerse dataset and novel brick tokenization method,
which together enhance the model’s understanding of diverse brick
types. Moreover, although general 3D generation methods are ca-
pable of producing highly detailed and realistic 3D meshes, their
outputs cannot be effectively transformed into well-connected and
LEGO-compatible structures, making them unsuitable for real-world
applications.
For image conditioning, as shown in Fig. 8, we use LEGO-style

images generated by the GPT-4. To feed our multi-view-normal
conditioned LegoACE, we render normal maps from meshes gen-
erated by Hunyuan3D 2.5 using the same reference images. While
the results of general image-to-3D methods cannot be effectively
converted into LEGO-compatible assemblies, our LegoACE gener-
ates structures that faithfully follow the input normal maps and are
assembled with appropriate LEGO bricks.

Quantitative Comparison. Since general 3D generation methods
cannot natively produce LEGO-compatible structures, and the mesh-
to-LEGO legalization tools fall outside the scope of this paper, we
limit our quantitative comparison in this section to techniques de-
signed specifically for LEGO.
For the unconditional LEGO generation, following [Chen et al.

2021; Ge et al. 2024a; Hertz et al. 2022], we compute the Minimum
Matching Distance (MMD), 1-NNA and COV to quantitatively eval-
uate the generated results. We generate 400 models for each method
as the set of generated data, and select 400 models from the LEGO
micro-building dataset as the set of real data. For each generated
or real LEGO model, we sampled 2,048 points, and the MMD, 1-
NNA and COV values are computed based on Chamfer Distance
(CD) and Earth Mover’s Distance (EMD) between the sampled point
clouds. We also evaluate the training and testing time for each
method. For connectivity evaluation, we sample 100 models from
each method. By manually inspecting each model for issues such as
overlapping bricks and floating components, we compute the con-
nected rate, which denotes the proportion of models that achieved
perfect connectivity. As shown in Table 2, our method significantly
outperforms the volume-based diffusion approach in both MMD
and 1-NNA metrics, indicating better output quality and geometric
fidelity. The slightly inferior performance of our method on the
COV metric may be attributed to the considerably smaller parame-
ter size, which in turn could constrain the diversity of the generated
results. As for runtime, our method converges after only 10 min-
utes of training, whereas the diffusion method [Ge et al. 2024a]
requires up to 20 hours of training. Our method also achieves higher
inference performance, requiring only 3 seconds to infer a model,
while [Ge et al. 2024a] takes 3 minutes, including 2.5 minutes for

8

LegoACE: Autoregressive Construction Engine for Expressive LEGO® Assemblies SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong

SPAR3D TripoSG Hi3DGenOursReference

Fig. 8. Image-conditional qualitative comparison.We compare our method with several image-to-3D models, including SPAR3D [Huang et al. 2025],
TripoSG [Li et al. 2025], and Hi3DGen [Ye et al. 2025]. We generate LEGO-style reference images using the GPT-4 image model to serve as inputs for these
baseline methods. Since our method requires multi-view normal maps as input, we leverage Hunyuan3D 2.5 [Zhao et al. 2025a] to generate LEGO-style
meshes from the RGB reference images, and then render multi-view normal maps from these meshes to serve as input to our model. For these general-purpose
models, we convert the generated meshes (shown in the top-left corners and highlighted with green boxes) into LEGO-compatible models for fair comparison.

inference and 0.5 minutes for post-processing. Regarding the con-
nection rate, our approach, which implicitly learns the inter-brick
relationships, enables more efficient and stable generation of mod-
els with appropriate layouts. As a result, we achieve a connection
rate of 82%, significantly outperforming volume-based methods that
rely on explicit geometric information, which only reach 53%. This
demonstrates the advantage of modeling inter-brick relationships
for producing well-connected structural layouts.

For the text-conditioned variant of LegoACE, we sample prompts
from the StableText2Lego [Pun et al. 2025] dataset and the valida-
tion set of our LegoVerse. Using these shared prompts, we generate
180 models respectively with LegoACE and BrickGPT. To assess
semantic alignment, we compute the CLIP score between the in-
put text prompts and the generated results. Our method achieves a
CLIP score of 23.25, compared to 21.92 for BrickGPT, demonstrating
superior alignment with the input text and stronger semantic expres-
siveness. To evaluate human preferences, we conducted a user study
with 35 participants who each compared 20 text-conditioned models
generated by our method and by BrickGPT. Participants were asked
to assess the aesthetics and structural reasonableness of each model
with respect to the input text. Our method achieved a preference
score of 87%, significantly outperforming BrickGPT, which received
only 13%. Also, compared to BrickGPT’s requirement of 10 tokens

Table 3. Ablation study on subsequence data augmentation and DPO.
We evaluate the generated results using the Earth Mover’s Distance (EMD)
and Chamfer Distance (CD) with ground truth, and additionally measure
human preference scores to assess the semantic quality of the outputs.

Method Base line + Subseq. + DPO (Ours)

EMD↓ 9.71 6.56 5.92
CD ↓ 13.23 10.32 7.96

per brick, our strategy uses only 5 tokens, yielding a more compact
and efficient representation while significantly enhancing output
quality. Moreover, their tokenization scheme requires a unique text
description for each brick type, making it impractical for large-
scale models; whereas our approach scales effortlessly to extensive
datasets without additional manual effort.

4.4 Ablation Study
As described in Sec. 3.3, we propose a subsequence sampling strat-
egy to augment the training dataset when using normal maps as
the conditional inputs, and employ Direct Preference Optimization
(DPO) to improve the alignment with the input conditional inputs.

In this section, we present ablation studies to evaluate the effec-
tiveness of the subsequence sampling strategy and DPO, evaluat-
ing reconstruction quality using Chamfer Distance (CD) and Earth

9

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong Xu et al.

Baseline + Subseq. OursInput Normal Maps

Fig. 9. Ablation study on subsequence data augmentation and DPO.
Without subsequence augmentation, the generated outputs exhibit notable
deviations from the intended input. Incorporating augmentation enhances
structural fidelity—for example, improving alignment in elements such as
the music stand of a piano and the roof of a house. The application of DPO
further refines fine-grained details, including the shape of the piano legs
and the contour of the roof.
Mover’s Distance (EMD). We compare our full model with two vari-
ants: (1) a baseline model trained without subsequence sampling or
DPO, and (2) a model trained with subsequence sampling but with-
out DPO. As shown in Tab. 3 and Fig. 9, the reduced distance to the
ground truth demonstrates that the subsequence sampling strategy
enhances the quality and geometric fidelity of the generated models,
while the incorporation of DPO further improves these results by
fine-tuning the model using a preference dataset.

5 LIMITATIONS AND CONCLUSIONS

5.1 Limitations
Although our approach produces promising results in LEGO model
generation, it still has several limitations. First, our dataset, while
comprising 55,000 models, is relatively small for training a high-
fidelity 3D generative model, potentially constraining performance.
Second, since the model learns connectivity implicitly and lacks
explicit structural constraints, some generated instances contain
disconnected components. Strengthening structural connectivity
thus remains an important avenue for future work.

5.2 Conclusions
We present a novel approach LegoACE for LEGO model generation.
To facilitate expressive model training, we create a large-scale LEGO
dataset, LegoVerse, comprising 55,000 unique models and 9,314
brick types. By introducing a LEGO native tokenization method,
we convert each LEGO model into a sequence of tokens, enabling
learning through state-of-the-art autoregressive generative models.
Our method supports a wide range of input conditions, and we
have thoroughly validated its effectiveness under unconditional
generation, multi-view normal inputs, and text prompts. It is capable
of constructing diverse models using an unprecedented variety of
LEGO bricks.

ACKNOWLEDGMENTS
Xiaogang Jin was supported by the National Natural Science Foun-
dation of China (Grant Nos. 62472373, 62036010).

REFERENCES
Sijin Chen, Xin Chen, Anqi Pang, Xianfang Zeng, Wei Cheng, Yijun Fu, Fukun Yin,

Yanru Wang, Zhibin Wang, Chi Zhang, Jingyi Yu, Gang Yu, Bin Fu, and Tao Chen.
2024a. MeshXL: Neural Coordinate Field for Generative 3D Foundation Models. In
Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024.

Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen, Jiaxiang Tang, Xin Chen,
Zhongang Cai, Lei Yang, Gang Yu, Guosheng Lin, and Chi Zhang. 2025. MeshAny-
thing: Artist-Created Mesh Generation with Autoregressive Transformers. In The
Thirteenth International Conference on Learning Representations, ICLR 2025.

Yiwen Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong Chen, Jun Zhu, Chi Zhang,
and Guosheng Lin. 2024b. MeshAnything V2: Artist-Created Mesh Generation With
Adjacent Mesh Tokenization. arXiv preprint arXiv:2408.02555 (2024).

Zhang Chen, Yinda Zhang, Kyle Genova, Sean Ryan Fanello, Sofien Bouaziz, Chris-
tian Häne, Ruofei Du, Cem Keskin, Thomas A. Funkhouser, and Danhang Tang.
2021. Multiresolution Deep Implicit Functions for 3D Shape Representation. In 2021
IEEE/CVF International Conference on Computer Vision, ICCV 2021. 13067–13076.

Hyunsoo Chung, Jungtaek Kim, Boris Knyazev, Jinhwi Lee, Graham W. Taylor, Jaesik
Park, and Minsu Cho. 2021. Brick-by-Brick: Combinatorial Construction with Deep
Reinforcement Learning. In Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021. 5745–5757.

Angela Fan, Mike Lewis, and Yann N. Dauphin. 2018. Hierarchical Neural Story Gener-
ation. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, ACL 2018, Volume 1: Long Papers, Iryna Gurevych and Yusuke Miyao
(Eds.). 889–898.

Daoyi Gao, Yawar Siddiqui, Lei Li, and Angela Dai. 2024. MeshArt: Generating Articu-
lated Meshes with Structure-guided Transformers. arXiv preprint arXiv:2412.11596
(2024).

Jiahao Ge, Mingjun Zhou, Wenrui Bao, Hao Xu, and Chi-Wing Fu. 2024b. Creating
LEGO Figurines from Single Images. ACM Trans. Graph. 43, 4 (2024), 153:1–153:16.

Jiahao Ge, Mingjun Zhou, and Chi-Wing Fu. 2024a. Learn to Create Simple LEGO
Micro Buildings. ACM Trans. Graph. 43, 6 (2024), 249:1–249:13.

Google. 2024. Gemini 2.0 Flash. https://cloud.google.com/vertex-ai/generative-ai/docs/
models/gemini/2-0-flash.

Rebecca Gower, Agnes Heydtmann, and Henrik Petersen. 1998. Lego: Automated model
construction. European Study Group with Industry (1998).

Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2022.
SPAGHETTI: editing implicit shapes through part aware generation. ACM Trans.
Graph. 41, 4 (2022), 106:1–106:20.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The Curious
Case of Neural Text Degeneration. In 8th International Conference on Learning
Representations, ICLR 2020.

Zixuan Huang, Mark Boss, Aaryaman Vasishta, James M. Rehg, and Varun Jampani.
2025. SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images.
arXiv preprint arXiv:2501.04689 (2025).

Heewoo Jun and Alex Nichol. 2023. Shap-E: Generating Conditional 3D Implicit
Functions. arXiv preprint arXiv:2305.02463 (2023).

Seung-Mok Lee, Jae Woo Kim, and Hyun Myung. 2018. Split-and-Merge-Based Genetic
Algorithm (SM-GA) for LEGO Brick Sculpture Optimization. IEEE Access 6 (2018),
40429–40438.

Kyle Lennon, Katharina Fransen, Alexander O’Brien, Yumeng Cao, Matthew Beveridge,
Yamin Arefeen, Nikhil Singh, and Iddo Drori. 2021. Image2Lego: Customized LEGO
Set Generation from Images. arXiv preprint arXiv:2108.08477 (2021).

Yangguang Li, Zi-Xin Zou, Zexiang Liu, DehuWang, Yuan Liang, Zhipeng Yu, Xingchao
Liu, Yuan-Chen Guo, Ding Liang, Wanli Ouyang, and Yan-Pei Cao. 2025. TripoSG:
High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models. arXiv
preprint arXiv:2502.06608 (2025).

Ruixuan Liu, Alan Chen, Weiye Zhao, and Changliu Liu. 2024a. Physics-Aware Com-
binatorial Assembly Planning using Deep Reinforcement Learning. arXiv preprint
arXiv:2408.10162 (2024).

Ruixuan Liu, Kangle Deng, Ziwei Wang, and Changliu Liu. 2024b. StableLego: Stability
Analysis of Block Stacking Assembly. IEEE Robotics Autom. Lett. 9, 11 (2024), 9383–
9390.

Sheng-Jie Luo, Yonghao Yue, Chun-Kai Huang, Yu-Huan Chung, Sei Imai, Tomoyuki
Nishita, and Bing-Yu Chen. 2015. Legolization: optimizing LEGO designs. ACM
Trans. Graph. 34, 6 (2015), 222:1–222:12.

LinMa, Jiangtao Gong, Hao Xu, Hao Chen, Hao Zhao,WenbingHuang, and Guyue Zhou.
2023. Planning Assembly Sequence with Graph Transformer. In IEEE International
Conference on Robotics and Automation, ICRA 2023. 12395–12401.

Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia. 2020. PolyGen:
An Autoregressive Generative Model of 3D Meshes. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, Vol. 119. 7220–7229.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby,
Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-
Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé
Jégou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. 2024.

10

https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash

LegoACE: Autoregressive Construction Engine for Expressive LEGO® Assemblies SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong

DINOv2: Learning Robust Visual Features without Supervision. Trans. Mach. Learn.
Res. 2024 (2024).

Pavel Petrovic. 2001. Solving lego brick layout problem using evolutionary algorithms.
In Proceedings to Norwegian Conference on Computer Science.

Ava Pun, Kangle Deng, Ruixuan Liu, Deva Ramanan, Changliu Liu, and Jun-Yan Zhu.
2025. Generating Physically Stable and Buildable Brick Structures from Text. In
ICCV.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From
Natural Language Supervision. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021 (Proceedings of Machine Learning Research, Vol. 139).
8748–8763.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon,
and Chelsea Finn. 2023. Direct Preference Optimization: Your Language Model is
Secretly a Reward Model. In Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023.

Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti,
Vladislav Rosov, Angela Dai, and Matthias Nießner. 2024. MeshGPT: Generating
Triangle Meshes with Decoder-Only Transformers. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2024. 19615–19625.

Ben Stephenson. 2016. A Multi-Phase Search Approach to the LEGO Construction
Problem. In Proceedings of the Ninth Annual Symposium on Combinatorial Search,
SOCS 2016. 89–97.

Jiaxiang Tang, Zhaoshuo Li, Zekun Hao, Xian Liu, Gang Zeng, Ming-Yu Liu, and
Qinsheng Zhang. 2025. EdgeRunner: Auto-regressive Auto-encoder for ArtisticMesh
Generation. In The Thirteenth International Conference on Learning Representations,
ICLR 2025.

Romain Pierre Testuz, Yuliy Schwartzburg, and Mark Pauly. 2013. Automatic generation
of constructable brick sculptures. Eurographics 2013-Short Papers (2013), 81–84.

Rylee Thompson, Elahe Ghalebi, Terrance DeVries, and Graham W Taylor. 2020. Build-
ing lego using deep generative models of graphs. arXiv preprint arXiv:2012.11543
(2020).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample.
2023a. LLaMA: Open and Efficient Foundation Language Models. arXiv preprint
arXiv:2302.13971 (2023).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, NamanGoyal, AnthonyHartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan
Narang, Aurélien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom.
2023b. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv preprint
arXiv:2307.09288 (2023).

Haohan Weng, Yikai Wang, Tong Zhang, C. L. Philip Chen, and Jun Zhu. 2024a. Piv-
otMesh: Generic 3D Mesh Generation via Pivot Vertices Guidance. arXiv preprint
arXiv:2405.16890 (2024).

Haohan Weng, Zibo Zhao, Biwen Lei, Xianghui Yang, Jian Liu, Zeqiang Lai, Zhuo Chen,
Yuhong Liu, Jie Jiang, Chunchao Guo, et al. 2024b. Scaling mesh generation via
compressive tokenization. arXiv preprint arXiv:2411.07025 (2024).

David V. Winkler. 2005. Automated Brick Layout. In Proc. BrickFest. 145–166.
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. 2020. Transformers: State-of-the-Art Natural Language Processing. In Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online, 38–45.

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong
Chen, Xin Tong, and Jiaolong Yang. 2024. Structured 3D Latents for Scalable and
Versatile 3D Generation. arXiv preprint arXiv:2412.01506 (2024).

Hao Xu, Ka-Hei Hui, Chi-Wing Fu, and Hao Zhang. 2019. Computational LEGO technic
design. ACM Trans. Graph. 38, 6 (2019), 196.

Chongjie Ye, Yushuang Wu, Ziteng Lu, Jiahao Chang, Xiaoyang Guo, Jiaqing Zhou, Hao
Zhao, and Xiaoguang Han. 2025. Hi3DGen: High-fidelity 3D Geometry Generation
from Images via Normal Bridging. arXiv preprint arXiv:2503.22236 (2025).

Ruowen Zhao, Junliang Ye, Zhengyi Wang, Guangce Liu, Yiwen Chen, Yikai Wang, and
Jun Zhu. 2025b. DeepMesh: Auto-Regressive Artist-mesh Creation with Reinforce-
ment Learning. arXiv preprint arXiv:2503.15265 (2025).

Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei
Feng, Mingxin Yang, Sheng Zhang, Xianghui Yang, Huiwen Shi, Sicong Liu, Junta
Wu, Yihang Lian, Fan Yang, Ruining Tang, Zebin He, XinzhouWang, Jian Liu, Xuhui
Zuo, Zhuo Chen, Biwen Lei, Haohan Weng, Jing Xu, Yiling Zhu, Xinhai Liu, Lixin
Xu, Changrong Hu, Tianyu Huang, Lifu Wang, Jihong Zhang, Meng Chen, Liang
Dong, Yiwen Jia, Yulin Cai, Jiaao Yu, Yixuan Tang, Hao Zhang, Zheng Ye, Peng
He, Runzhou Wu, Chao Zhang, Yonghao Tan, Jie Xiao, Yangyu Tao, Jianchen Zhu,
Jinbao Xue, Kai Liu, Chongqing Zhao, Xinming Wu, Zhichao Hu, Lei Qin, Jianbing
Peng, Zhan Li, Minghui Chen, Xipeng Zhang, Lin Niu, Paige Wang, Yingkai Wang,
Haozhao Kuang, Zhongyi Fan, Xu Zheng, Weihao Zhuang, YingPing He, Tian Liu,
Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, Jingwei Huang, and Chunchao Guo.
2025a. Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D
Assets Generation. arXiv preprint arXiv:2501.12202 (2025).

Jie Zhou, Xuejin Chen, and Ying-Qing Xu. 2019. Automatic Generation of Vivid LEGO
Architectural Sculptures. Comput. Graph. Forum 38, 6 (2019), 31–42.

Mingjun Zhou, Jiahao Ge, Hao Xu, and Chi-Wing Fu. 2023. Computational Design of
LEGO® Sketch Art. ACM Trans. Graph. 42, 6 (2023), 201:1–201:15.

11

	Abstract
	1 Introduction
	2 Related Work
	2.1 LEGO Generation
	2.2 Auto-Regressive 3D Generation

	3 Method
	3.1 LegoVerse Dataset
	3.2 LEGO Native Tokenization
	3.3 LegoACE

	4 Experiments
	4.1 Implementation Details
	4.2 Results
	4.3 Comparison
	4.4 Ablation Study

	5 Limitations and Conclusions
	5.1 Limitations
	5.2 Conclusions

	Acknowledgments
	References

